Bisectors of Adjacent Angles between Straight Lines Meeting at Point are Perpendicular
Corollary to Two Angles on Straight Line make Two Right Angles
If a straight line meets another straight line, the bisectors of the two adjacent angles between them are perpendicular.
Proof 1
Let $AB$ and $CD$ be two straight lines that cross at $E$.
Let $\angle AEC$ be bisected by $EF$.
Let $\angle CEB$ be bisected by $EG$.
Thus:
- $2 \angle FEC = \angle AEC$
and:
- $2 \angle CEG = \angle CEB$
But from Two Angles on Straight Line make Two Right Angles, $\angle AEC + \angle CEB$ equal $2$ right angles.
Thus $2 \angle FEC + 2 \angle CEG$ equal $2$ right angles.
Hence $\angle FEG = \angle FEC + \angle CEG$ equals $1$ right angle.
That is $EF$ and $EG$ are perpendicular.
$\blacksquare$
Proof 2
Let $\LL_1$ and $\LL_2$ be straight lines embedded in a cartesian plane $\CC$, expressed in normal form as:
\(\ds \LL_1: \ \ \) | \(\ds x \cos \alpha + y \sin \alpha\) | \(=\) | \(\ds p\) | |||||||||||
\(\ds \LL_2: \ \ \) | \(\ds x \cos \beta + y \sin \beta\) | \(=\) | \(\ds q\) |
From Bisectors of Angles between Two Straight Lines, the angle bisectors of the angles formed at the point of intersection of $\LL_1$ and $\LL_2$ are given by:
\(\ds x \paren {\cos \alpha - \cos \beta} + y \paren {\sin \alpha - \sin \beta} - \paren {p - q}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds x \paren {\cos \alpha + \cos \beta} + y \paren {\sin \alpha + \sin \beta} - \paren {p + q}\) | \(=\) | \(\ds 0\) |
These are in the form $l x + m y + n = 0$.
We use Condition for Straight Lines in Plane to be Perpendicular to prove that $l_1 l_2 + m_1 m_2 = 0$, where:
\(\ds l_1\) | \(=\) | \(\ds \cos \alpha - \cos \beta\) | ||||||||||||
\(\ds l_2\) | \(=\) | \(\ds \cos \alpha + \cos \beta\) | ||||||||||||
\(\ds m_1\) | \(=\) | \(\ds \sin \alpha - \sin \beta\) | ||||||||||||
\(\ds m_2\) | \(=\) | \(\ds \sin \alpha + \sin \beta\) |
Hence
\(\ds l_1 l_2 + m_1 m_2\) | \(=\) | \(\ds \paren {\cos \alpha - \cos \beta} \paren {\cos \alpha + \cos \beta} + \paren {\sin \alpha - \sin \beta} \paren {\sin \alpha + \sin \beta}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\cos^2 \alpha - \cos^2 \beta} + \paren {\sin^2 \alpha - \sin^2 \beta}\) | Difference of Two Squares | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\cos^2 \alpha + \sin^2 \alpha} - \paren {\cos^2 \beta + \sin^2 \beta}\) | rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 - 1\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
Hence the result.
$\blacksquare$
Sources
- 1968: M.N. Aref and William Wernick: Problems & Solutions in Euclidean Geometry ... (previous) ... (next): Chapter $1$: Triangles and Polygons: Theorems and Corollaries $1.1$: Corollary $2$