Bound on Survival Function of Pointwise Sum
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $f, g : X \to \overline \R$ be $\Sigma$-measurable functions such that the pointwise sum $f + g$ is well-defined.
Let $F_{f + g}$ be the survival function of the pointwise scalar multiple $f + g$.
Let $F_f$ and $F_g$ be the survival functions of $f$ and $g$ respectively.
Then:
- $\ds \map {F_{f + g} } {\alpha + \beta} \le \map {F_f} \alpha + \map {F_g} \beta$ for all $\alpha, \beta \in \hointr 0 \infty$.
Proof
Let $\alpha, \beta \in \hointr 0 \infty$.
We show that:
- $\set {x \in X : \size {\map f x + \map g x} \ge \alpha + \beta} \subseteq \set {x \in X : \size {\map f x} \ge \alpha} \cup \set {x \in X : \size {\map g x} \ge \beta}$
Let $x \in X$ be such that $\size {\map f x + \map g x} \ge \alpha + \beta$.
If $\size {\map f x + \map g x} = \infty$, we have $\map f x + \map g x = \infty$ or $\map f x + \map g x = -\infty$.
In the former case, we have $\map f x = \infty$ or $\map g x = \infty$.
In the latter case, we have $\map f x = -\infty$ or $\map g x = -\infty$.
So in either case we have $\size {\map f x} = \infty$ or $\size {\map g x} = \infty$.
So we either have $\size {\map f x} \ge \alpha$ or $\size {\map g x} \ge \beta$.
So:
- $x \in \set {x \in X : \size {\map f x} \ge \alpha} \cup \set {x \in X : \size {\map g x} \ge \beta}$
in this case.
Now suppose that $\size {\map f x + \map g x} < \infty$.
Suppose that $\size {\map f x} < \alpha$ and $\size {\map g x} < \beta$.
Then from the Triangle Inequality, we have:
- $\size {\map f x + \map g x} \le \size {\map f x} + \size {\map g x} < \alpha + \beta$
contradicting that:
- $\size {\map f x + \map g x} \ge \alpha + \beta$
So we must have $\size {\map f x} \ge \alpha$ or $\size {\map g x} \ge \beta$.
So, we have:
- $x \in \set {x \in X : \size {\map f x} \ge \alpha} \cup \set {x \in X : \size {\map g x} \ge \beta}$
again in this case.
So:
- $\set {x \in X : \size {\map f x + \map g x} \ge \alpha + \beta} \subseteq \set {x \in X : \size {\map f x} \ge \alpha} \cup \set {x \in X : \size {\map g x} \ge \beta}$ for all $\alpha, \beta \in \hointr 0 \infty$.
by the definition of set inclusion.
Then we have:
\(\ds \map {F_{f + g} } {\alpha + \beta}\) | \(=\) | \(\ds \map \mu {\set {x \in X : \size {\map f x + \map g x} \ge \alpha + \beta} }\) | Definition of Survival Function | |||||||||||
\(\ds \) | \(\le\) | \(\ds \map \mu {\set {x \in X : \size {\map f x} \ge \alpha} \cup \set {x \in X : \size {\map g x} \ge \beta} }\) | Measure is Monotone | |||||||||||
\(\ds \) | \(\le\) | \(\ds \map \mu {\set {x \in X : \size {\map f x} \ge \alpha} } + \map \mu {\set {x \in X : \size {\map g x} \ge \beta} }\) | Measure is Subadditive | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {F_f} \alpha + \map {F_g} \beta\) | Definition of Survival Function |
$\blacksquare$
Sources
- 2014: Loukas Grafakos: Classical Fourier Analysis (3rd ed.) ... (previous) ... (next): $1.1.1$: The Distribution Function