Category:Square-Free Integers

From ProofWiki
Jump to navigation Jump to search

This category contains results about Square-Free Integers.
Definitions specific to this category can be found in Definitions/Square-Free Integers.


Let $n \in \Z$ be an integer.


Then $n$ is a square-free integer if and only if $n$ has no divisor which is the square of a prime.


That is, if and only if the prime decomposition $n = {p_1}^{k_1} {p_2}^{k_2} \cdots {p_r}^{k_r}$ is such that:

$\forall i: 1 \le i \le r: k_i = 1$