Category:Square-Free Integers

From ProofWiki
Jump to navigation Jump to search

This category contains results about integers which are square-free.


Let $n \in \Z$.


Then $n$ is square-free if and only if $n$ has no divisor which is the square of a prime.


That is, if and only if the prime decomposition $n = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r}$ is such that:

$\forall i: 1 \le i \le r: k_i = 1$