Category:Von Neumann Hierarchy
Jump to navigation
Jump to search
This category contains results about Von Neumann Hierarchy.
Let $U$ denote the universal class.
The von Neumann hierarchy is a mapping $V: \On \to U$ on the ordinals, defined via the Second Principle of Transfinite Recursion:
- $\map V x = \begin{cases}
\O & : x = 0 \\ & \\ \powerset {\map V n} & : x = n^+ \\ & \\ \ds \bigcup_{y \mathop \in x} \map V y & : x \in \operatorname {Lim} \\ \end{cases}$ where:
- $\powerset x$ denotes the power set of $x$
- $\operatorname {Lim}$ denotes the set of limit ordinals.
Pages in category "Von Neumann Hierarchy"
The following 12 pages are in this category, out of 12 total.