Common Factor Cancelling in Congruence/Corollary 1/Warning

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b, x, y, m \in \Z$.

Let:

$a x \equiv b y \pmod m$ and $a \equiv b \pmod m$

where $a \equiv b \pmod m$ denotes that $a$ is congruent modulo $m$ to $b$.


Let $a$ not be coprime to $m$.

Then it is not necessarily the case that:

$x \equiv y \pmod m$


Proof

Proof by Counterexample:

Let $a = 6, b = 21, x = 7, y = 12, m = 15$.

We note that $\map \gcd {6, 15} = 3$ and so $6$ and $15$ are not coprime.


We have that:

\(\ds 6\) \(\equiv\) \(\ds 6\) \(\ds \pmod {15}\)
\(\ds 21\) \(\equiv\) \(\ds 6\) \(\ds \pmod {15}\)
\(\ds \leadsto \ \ \) \(\ds a\) \(\equiv\) \(\ds b\) \(\ds \pmod {15}\)


Then:

\(\ds 6 \times 7\) \(=\) \(\ds 42\)
\(\ds \) \(\equiv\) \(\ds 12\) \(\ds \pmod {15}\)
\(\ds 21 \times 12\) \(=\) \(\ds 252\)
\(\ds \) \(\equiv\) \(\ds 12\) \(\ds \pmod {15}\)
\(\ds \leadsto \ \ \) \(\ds a x\) \(\equiv\) \(\ds b y\) \(\ds \pmod {15}\)


But:

\(\ds 7\) \(\equiv\) \(\ds 7\) \(\ds \pmod {15}\)
\(\ds 12\) \(\equiv\) \(\ds 12\) \(\ds \pmod {15}\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\not \equiv\) \(\ds y\) \(\ds \pmod {15}\)

$\blacksquare$


Sources