Complex Modulus is Non-Negative
Jump to navigation
Jump to search
Theorem
Let $z = a + i b \in \C$ be a complex number.
Let $\cmod z$ be the modulus of $z$.
Then:
- $\cmod z \ge 0$
Proof
\(\ds \cmod z\) | \(=\) | \(\ds \cmod {a + b i}\) | Definition of $z$ | |||||||||||
\(\ds \) | \(=\) | \(\ds +\sqrt {a^2 + b^2}\) | Definition of Complex Modulus | |||||||||||
\(\ds \) | \(\ge\) | \(\ds 0\) | Definition of Positive Square Root |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1.2$. The Algebraic Theory