# De Morgan's Laws (Set Theory)/Set Difference/Family of Sets/Difference with Intersection

## Theorem

Let $S$ and $T$ be sets.

Let $\family {T_i}_{i \mathop \in I}$ be a family of subsets of $T$.

Then:

$\ds S \setminus \bigcap_{i \mathop \in I} T_i = \bigcup_{i \mathop \in I} \paren {S \setminus T_i}$

where:

$\ds \bigcup_{i \mathop \in I} T_i := \set {x: \exists i \in I: x \in T_i}$

that is, the union of $\family {T_i}_{i \mathop \in I}$.

## Proof

Suppose:

$\ds x \in S \setminus \bigcap_{i \mathop \in I} T_i$

Note that by Set Difference is Subset we have that $x \in S$ (we need this later).

Then:

 $\ds x$ $\in$ $\ds S \setminus \bigcap_{i \mathop \in I} T_i$ $\ds \leadstoandfrom \ \$ $\ds x$ $\notin$ $\ds \bigcap_{i \mathop \in I} T_i$ Definition of Set Difference $\ds \leadstoandfrom \ \$ $\ds \neg \leftparen {\forall i \in I}: \,$ $\ds x$ $\in$ $\ds \rightparen {T_i}$ Definition of Intersection of Family $\ds \leadstoandfrom \ \$ $\ds \exists i \in I: \,$ $\ds x$ $\notin$ $\ds T_i$ Denial of Universality $\ds \leadstoandfrom \ \$ $\ds \exists i \in I: \,$ $\ds x$ $\in$ $\ds S \setminus T_i$ Definition of Set Difference: note $x \in S$ from above $\ds \leadstoandfrom \ \$ $\ds x$ $\in$ $\ds \bigcup_{i \mathop \in I} \paren {S \setminus T_i}$ Definition of Union of Family

Therefore:

$\ds S \setminus \bigcap_{i \mathop \in I} T_i = \bigcup_{i \mathop \in I} \paren {S \setminus T_i}$

$\blacksquare$

## Source of Name

This entry was named for Augustus De Morgan.