Definite Integral from 0 to Half Pi of Logarithm of Sine x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x = -\frac \pi 2 \ln 2$


Proof

By Definite Integral from $0$ to $\dfrac \pi 2$ of $\map \ln {\sin x}$: Lemma, we have:

$\ds \int_0^\pi \map \ln {\sin x} \rd x = 2 \int_0^{\pi/2} \map \ln {\sin x} \rd x$

We also have:

\(\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x\) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\map \sin {\frac \pi 2 - x} } \rd x\) Integral between Limits is Independent of Direction
\(\ds \) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\cos x} \rd x\) Sine of Complement equals Cosine

giving:

\(\ds 2 \int_0^{\pi/2} \map \ln {\sin x} \rd x\) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\sin x \cos x} \rd x\) Sum of Logarithms
\(\ds \) \(=\) \(\ds \int_0^{\pi/2} \map \ln {\frac 1 2 \sin 2 x} \rd x\) Double Angle Formula for Sine
\(\ds \) \(=\) \(\ds \frac \pi 2 \map \ln {\frac 1 2} + \int_0^{\pi/2} \map \ln {\sin 2 x} \rd x\) Primitive of Constant, Sum of Logarithms
\(\ds \) \(=\) \(\ds \frac \pi 2 \map \ln {\frac 1 2} + \frac 1 2 \int_0^\pi \map \ln {\sin u} \rd u\) substituting $u = 2 x$
\(\ds \) \(=\) \(\ds -\frac \pi 2 \ln 2 + \int_0^{\pi/2} \map \ln {\sin u} \rd u\) Logarithm of Reciprocal

Therefore:

$\ds \int_0^{\pi/2} \map \ln {\sin x} \rd x = -\frac \pi 2 \ln 2$

$\blacksquare$