Definition:Additive Group of Integers Modulo m
Jump to navigation
Jump to search
Definition
Let $m \in \Z$ such that $m > 1$.
The additive group of integers modulo $m$, denoted $\struct {\Z_m, +_m}$, is the set of integers modulo $m$ under the operation of addition modulo $m$.
Also denoted as
Some sources denote $\struct {\Z_m, +_m}$ as $\struct {\N_m, +_m}$, defining the underlying set as a subset of the natural numbers rather than the integers:
- $\N_m = \set {0, 1, \ldots, m - 1}$
As can be seen, $\Z_m$ and $\N_m$ are the same thing.
Examples
The additive group of integers modulo $m$ can be described by showing its Cayley table.
Modulo 3
- $\begin{array}{r|rrr} \struct {\Z_3, +_3} & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \hline \eqclass 0 3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \eqclass 1 3 & \eqclass 1 3 & \eqclass 2 3 & \eqclass 0 0 \\ \eqclass 2 3 & \eqclass 2 3 & \eqclass 0 3 & \eqclass 1 3 \\ \end{array}$
Modulo 4
- $\begin{array}{r|rrrr} \struct {\Z_4, +_4} & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \hline \eqclass 0 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \eqclass 1 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 & \eqclass 0 4 \\ \eqclass 2 4 & \eqclass 2 4 & \eqclass 3 4 & \eqclass 0 4 & \eqclass 1 4 \\ \eqclass 3 4 & \eqclass 3 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 \\ \end{array}$
Modulo 5
- $\begin{array} {r|rrrrr} \struct {\Z_5, +_5} & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 \\ \hline \eqclass 0 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 \\ \eqclass 1 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 \\ \eqclass 2 5 & \eqclass 2 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 \\ \eqclass 3 5 & \eqclass 3 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 \\ \eqclass 4 5 & \eqclass 4 5 & \eqclass 0 5 & \eqclass 1 5 & \eqclass 2 5 & \eqclass 3 5 \\ \end{array}$
Modulo 6
- $\begin{array}{r|rrrrrr} \struct {\Z_6, +_6} & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \hline \eqclass 0 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 \\ \eqclass 1 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 \\ \eqclass 2 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 \\ \eqclass 3 6 & \eqclass 3 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 \\ \eqclass 4 6 & \eqclass 4 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 \\ \eqclass 5 6 & \eqclass 5 6 & \eqclass 0 6 & \eqclass 1 6 & \eqclass 2 6 & \eqclass 3 6 & \eqclass 4 6 \\ \end{array}$
Also see
- Results about additive groups of integers modulo $m$ can be found here.
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): cyclic group