# Definition:Complete Ritz Sequence

Jump to navigation
Jump to search

This article needs to be linked to other articles.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{MissingLinks}}` from the code. |

## Definition

Let $\MM$ be a normed linear space.

Let $\sequence {\phi_n}$ be a Ritz sequence in $\MM$.

Let $\MM_n$ be an $n$-dimensional linear subspace of $\MM$, spanned by the first $n$ mappings of $\sequence {\phi_n}$.

Let $\eta_n$ be of the form:

- $\eta_n = \boldsymbol \alpha \boldsymbol \phi$

where $\boldsymbol \alpha$ is an $n$-dimensional real vector.

Suppose:

- $\forall y \in \MM: \forall \epsilon > 0: \exists \map n \epsilon \in \N: \exists \eta_n \in \MM_n: \size {\eta_n - y} < \epsilon$

This article, or a section of it, needs explaining.In particular: which norm is it?You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Explain}}` from the code. |

Then the sequence $\sequence{\phi_n}$ is called **complete** in $\MM$.

## Source of Name

This entry was named for Walther Ritz.

## Sources

- 1963: I.M. Gelfand and S.V. Fomin:
*Calculus of Variations*... (previous) ... (next): $\S 8.40 $: The Ritz Method and the Method of Finite Differences