Definition:Real Vector Space

From ProofWiki
Jump to navigation Jump to search


Let $\R$ be the set of real numbers.

Then the $\R$-module $\R^n$ is called the real ($n$-dimensional) vector space.

Also known as

A real vector space is also known as a real linear space.

Also see

This object is proved to be a vector space in Real Vector Space is Vector Space.

The definition is also expanded upon in Real Numbers form Vector Space.

The real vector spaces have direct applications to the real world. In fact, it could be suggested that they are the interface between mathematics and physical reality, as follows:

  • The $\R$-vector space $\R^3$ can be shown (given appropriate assumptions about the nature of the universe) to be isomorphic to the spatial universe.