Definition:Concave Real Function/Definition 1

From ProofWiki
Jump to navigation Jump to search

Definition

Let $f$ be a real function which is defined on a real interval $I$.


$f$ is concave on $I$ if and only if:

$\forall x, y \in I: \forall \alpha, \beta \in \R_{>0}, \alpha + \beta = 1: f \left({\alpha x + \beta y}\right) \ge \alpha f \left({x}\right) + \beta f \left({y}\right)$


ConcaveFunction1.png

The geometric interpretation is that any point on the chord drawn on the graph of any concave function always lies on or below the graph.


Strictly Concave

$f$ is strictly concave on $I$ if and only if:

$\forall x, y \in I, x \ne y: \forall \alpha, \beta \in \R_{>0}, \alpha + \beta = 1: f \left({\alpha x + \beta y}\right) > \alpha f \left({x}\right) + \beta f \left({y}\right)$


Also see


Sources