Definition:Truth Function
Definition
Let $\mathbb B$ be the Boolean domain $\set {\T, \F}$.
Let $k$ be a natural number.
A mapping $f: \mathbb B^k \to \mathbb B$ is called a truth function.
Truth Functions of Connectives
The logical connectives are assumed to be truth-functional.
Hence, they are represented by certain truth functions.
Logical Negation
The logical not connective defines the truth function $f^\neg$ as follows:
\(\ds \map {f^\neg} \F\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\neg} \T\) | \(=\) | \(\ds \F\) |
Logical Conjunction
The conjunction connective defines the truth function $f^\land$ as follows:
\(\ds \map {f^\land} {\F, \F}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\land} {\F, \T}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\land} {\T, \F}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\land} {\T, \T}\) | \(=\) | \(\ds \T\) |
Logical Disjunction
The disjunction connective defines the truth function $f^\lor$ as follows:
\(\ds \map {f^\lor} {\F, \F}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\lor} {\F, \T}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\lor} {\T, \F}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\lor} {\T, \T}\) | \(=\) | \(\ds \T\) |
Conditional
The conditional connective defines the truth function $f^\to$ as follows:
\(\ds \map {f^\to} {\F, \F}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\to} {\F, \T}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\to} {\T, \F}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\to} {\T, \T}\) | \(=\) | \(\ds \T\) |
Biconditional
The biconditional connective defines the truth function $f^\leftrightarrow$ as follows:
\(\ds \map {f^\leftrightarrow} {\F, \F}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\leftrightarrow} {\F, \T}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\leftrightarrow} {\T, \F}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\leftrightarrow} {\T, \T}\) | \(=\) | \(\ds \T\) |
Exclusive Disjunction
The exclusive or connective defines the truth function $f^\oplus$ as follows:
\(\ds \map {f^\oplus} {\F, \F}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\oplus} {\F, \T}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\oplus} {\T, \F}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\oplus} {\T, \T}\) | \(=\) | \(\ds \F\) |
Logical NAND
The NAND connective defines the truth function $f^\uparrow$ as follows:
\(\ds \map {f^\uparrow} {\F, \F}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\uparrow} {\F, \T}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\uparrow} {\T, \F}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\uparrow} {\T, \T}\) | \(=\) | \(\ds \F\) |
Logical NOR
The NOR connective defines the truth function $f^\downarrow$ as follows:
\(\ds \map {f^\downarrow} {\F, \F}\) | \(=\) | \(\ds \T\) | ||||||||||||
\(\ds \map {f^\downarrow} {\F, \T}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\downarrow} {\T, \F}\) | \(=\) | \(\ds \F\) | ||||||||||||
\(\ds \map {f^\downarrow} {\T, \T}\) | \(=\) | \(\ds \F\) |
Also known as
Some sources hyphenate truth function as truth-function.
Others speak of a boolean function, a boolean operator or just a boolean, alluding to the fact that there are two possible outputs.
The name Boolean here is for George Boole, the pioneer of what is often referred to as Boolean algebra.
Also see
- Definition:Truth Table, a common method for tabulating the definition of a truth function.
- Results about truth functions can be found here.
Sources
- 1910: Alfred North Whitehead and Bertrand Russell: Principia Mathematica: Volume $\text { 1 }$ ... (previous) ... (next): Chapter $\text{I}$: Preliminary Explanations of Ideas and Notations
- 1946: Alfred Tarski: Introduction to Logic and to the Methodology of Deductive Sciences (2nd ed.) ... (previous) ... (next): $\S \text{II}.13$: Symbolism of sentential calculus
- 1959: A.H. Basson and D.J. O'Connor: Introduction to Symbolic Logic (3rd ed.) ... (previous) ... (next): $\S 2.2$: Truth-Functions
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $2$: The Propositional Calculus $2$: $3$ Truth-Tables
- 1988: Alan G. Hamilton: Logic for Mathematicians (2nd ed.) ... (previous) ... (next): $\S 1$: Informal statement calculus: $\S 1.2$: Truth functions and truth tables: Negation
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): truth function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): truth function
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Boolean