Derivative of Arccosecant Function
Jump to navigation
Jump to search
Theorem
Let $x \in \R$ be a real number such that $\size x > 1$.
Let $\arccsc x$ denote the arccosecant of $x$.
Then:
- $\dfrac {\map \d {\arccsc x} } {\d x} = \dfrac {-1} {\size x \sqrt {x^2 - 1} } = \begin {cases} \dfrac {-1} {x \sqrt {x^2 - 1} } & : 0 < \arccsc x < \dfrac \pi 2 \ (\text {that is: $x > 1$}) \\ \dfrac {+1} {x \sqrt {x^2 - 1} } & : -\dfrac \pi 2 < \arccsc x < 0 \ (\text {that is: $x < -1$}) \\ \end{cases}$
Corollary
- $\map {\dfrac \d {\d x} } {\map \arccsc {\dfrac x a} } = \dfrac {-a} {\size x {\sqrt {x^2 - a^2} } } = \begin{cases} \dfrac {-a} {x \sqrt {x^2 - a^2} } & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \dfrac a {x \sqrt {x^2 - a^2} } & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \\ \end{cases}$
Proof
Let $y = \arccsc x$ where $x < -1$ or $x > 1$.
Then:
\(\ds y\) | \(=\) | \(\ds \arccsc x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \csc y\) | where $y \in \closedint 0 \pi \land y \ne \dfrac pi 2$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d x} {\d y}\) | \(=\) | \(\ds -\csc y \cot y\) | Derivative of Cosecant Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d y} {\d x}\) | \(=\) | \(\ds \frac {-1} {\csc y \cot y}\) | Derivative of Inverse Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\frac {\d y} {\d x} }^2\) | \(=\) | \(\ds \frac 1 {\csc^2 y \cot^2 y}\) | squaring both sides | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\csc^2 y \paren {\csc^2 y - 1} }\) | Difference of Squares of Cosecant and Cotangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {x^2 \paren {x^2 - 1} }\) | Definition of $x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {\dfrac {\d y} {\d x} }\) | \(=\) | \(\ds \dfrac 1 {\size x \sqrt {x^2 - 1} }\) | squaring both sides |
Since $\dfrac {\d y} {\d x} = \dfrac {-1} {\csc y \cot y}$, the sign of $\dfrac {\d y} {\d x}$ is opposite to the sign of $\csc y \cot y$.
Writing $\csc y \cot y$ as $\dfrac {\cos y} {\sin^2 y}$, it is evident that the sign of $\dfrac {\d y} {\d x}$ is opposite to the sign of $\cos y$.
From Sine and Cosine are Periodic on Reals, $\cos y$ is never negative on its domain ($y \in \closedint {-\dfrac \pi 2} {\dfrac \pi 2} \land y \ne 0$).
However, by definition of the arccosecant of $x$:
- $0 < \arccsc x < \dfrac \pi 2 \implies x > 1$
- $-\dfrac \pi 2 < \arccsc x < 0 \implies x < -1$
Thus:
- $\dfrac {\map \d {\arccsc x} } {\d x} = \dfrac {-1} {\size x \sqrt {x^2 - 1} } = \begin {cases} \dfrac {-1} {x \sqrt {x^2 - 1} } & : 0 < \arccsc x < \dfrac \pi 2 \ (\text {that is: $x > 1$}) \\ \dfrac {+1} {x \sqrt {x^2 - 1} } & : -\dfrac \pi 2 < \arccsc x < 0 \ (\text {that is: $x < -1$}) \\ \end{cases}$
$\blacksquare$
Also see
- Derivative of Arcsine Function
- Derivative of Arccosine Function
- Derivative of Arctangent Function
- Derivative of Arccotangent Function
- Derivative of Arcsecant Function
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): arc-cosecant
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Inverse trigonometric functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- Weisstein, Eric W. "Inverse Cosecant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/InverseCosecant.html