Derivative of Arccotangent Function
Jump to navigation
Jump to search
Theorem
Let $x \in \R$.
Let $\arccot x$ be the arccotangent of $x$.
Then:
- $\dfrac {\map \d {\arccot x} } {\d x} = \dfrac {-1} {1 + x^2}$
Corollary
- $\map {\dfrac \d {\d x} } {\map \arccot {\dfrac x a} } = \dfrac {-a} {a^2 + x^2}$
Proof 1
\(\ds y\) | \(=\) | \(\ds \arccot x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \cot y\) | Definition of Real Arccotangent | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d x} {\d y}\) | \(=\) | \(\ds -\csc^2 y\) | Derivative of Cotangent Function | ||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {1 + \cot^2 y}\) | Difference of Squares of Cosecant and Cotangent | |||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {1 + x^2}\) | Definition of $x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d y} {\d x}\) | \(=\) | \(\ds \frac {-1} {1 + x^2}\) | Derivative of Inverse Function |
$\blacksquare$
Proof 2
\(\ds \frac {\map \d {\arccot x} } {\d x}\) | \(=\) | \(\ds \map {\frac \d {\d x} } {\frac \pi 2 - \arctan x}\) | Tangent of Complement equals Cotangent | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 {1 + x^2}\) | Derivative of Arctangent Function |
$\blacksquare$
Also presented as
The derivative of the crccotangent function can also be presented in the form:
- $\dfrac {\map \d {\arccot x} } {\d x} = \dfrac {-1} {x^2 + 1}$
Also see
- Derivative of Arcsine Function
- Derivative of Arccosine Function
- Derivative of Arctangent Function
- Derivative of Arcsecant Function
- Derivative of Arccosecant Function
Sources
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $5$. Differential Calculus: Appendix: Derivatives of fundamental functions: $4.$ Inverse trigonometric functions
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Inverse trigonometric functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives