Derivative of Cotangent Function
Jump to navigation
Jump to search
Theorem
- $\map {\dfrac \d {\d x} } {\cot x} = -\csc^2 x = \dfrac {-1} {\sin^2 x}$
where $\sin x \ne 0$.
Corollary 1
- $\map {\dfrac \d {\d x} } {\cot a x} = -a \csc^2 a x$
Corollary 2
- $\dfrac \d {\d x} \cot x = -1 - \cot^2 x$
Corollary 3
- $\map {\dfrac \d {\d x} } {\cot a x} = -a \paren {\cot^2 a x + 1}$
Proof
From the definition of the cotangent function:
- $\cot x = \dfrac {\cos x} {\sin x}$
From Derivative of Sine Function:
- $\map {\dfrac \d {\d x} } {\sin x} = \cos x$
From Derivative of Cosine Function:
- $\map {\dfrac \d {\d x} } {\cos x}= -\sin x$
Then:
\(\ds \map {\dfrac \d {\d x} } {\cot x}\) | \(=\) | \(\ds \frac {\sin x \paren {-\sin x} - \cos x \cos x} {\sin^2 x}\) | Quotient Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-\paren {\sin^2 x + \cos^2 x} } {\sin^2 x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-1} {\sin^2 x}\) | Sum of Squares of Sine and Cosine |
This is valid only when $\sin x \ne 0$.
The result follows from the definition of the real cosecant function.
$\blacksquare$
Also see
Sources
- 1944: R.P. Gillespie: Integration (2nd ed.) ... (previous) ... (next): Chapter $\text {II}$: Integration of Elementary Functions: $\S 7$. Standard Integrals: $7$.
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $5$. Differential Calculus: Appendix: Derivatives of fundamental functions: $3.$ Trigonometric functions
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Trigonometric functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $6$: Derivatives