Derivative of Secant Function
Jump to navigation
Jump to search
Theorem
- $\map {\dfrac \d {\d x} } {\sec x} = \sec x \tan x$
where $\cos x \ne 0$.
Proof 1
From the definition of the secant function:
- $\sec x = \dfrac 1 {\cos x} = \paren {\cos x}^{-1}$
From Derivative of Cosine Function:
- $\map {\dfrac \d {\d x} } {\cos x} = -\sin x$
Then:
\(\ds \map {\dfrac \d {\d x} } {\sec x}\) | \(=\) | \(\ds \map {\dfrac \d {\d x} } {\paren {\cos x}^{-1} }\) | Exponent Laws | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-\sin x} \paren {-\cos^{-2} x}\) | Chain Rule for Derivatives, Power Rule | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\cos x} \frac {\sin x} {\cos x}\) | Exponent Laws | |||||||||||
\(\ds \) | \(=\) | \(\ds \sec x \tan x\) | Definition of Real Secant Function and Definition of Real Tangent Function |
This is valid only when $\cos x \ne 0$.
$\blacksquare$
Proof 2
\(\ds \map {\dfrac \d {\d x} } {\sec x}\) | \(=\) | \(\ds \map {\dfrac \d {\d x} } {\dfrac 1 {\cos x} }\) | Definition of Real Secant Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\cos x \map {\frac \d {\d x} } 1 - 1 \map {\frac \d {\d x} } {\cos x} } {\cos^2 x}\) | Quotient Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {0 - \paren {-\sin x} } {\cos^2 x}\) | Derivative of Cosine Function, Derivative of Constant | |||||||||||
\(\ds \) | \(=\) | \(\ds \sec x \tan x\) | Definition of Real Secant Function, Definition of Real Tangent Function |
This is valid only when $\cos x \ne 0$.
$\blacksquare$
Also see
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Trigonometric functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $1$: Derivatives
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $6$: Derivatives