Digamma Function of One Fourth

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \psi {\dfrac 1 4} = -\gamma - 3 \ln 2 - \dfrac \pi 2$

where:

$\psi$ denotes the digamma function
$\gamma$ denotes the Euler-Mascheroni constant.


Proof 1

\(\ds \map \psi {\frac 1 4}\) \(=\) \(\ds -\gamma - \ln 8 - \frac \pi 2 \map \cot {\frac 1 4 \pi} + 2 \sum_{n \mathop = 1}^{\ceiling {4 / 2} - 1} \map \cos {\frac {2 \pi n} 4} \map \ln {\map \sin {\frac {\pi n} 4} }\) Gauss's Digamma Theorem
\(\ds \) \(=\) \(\ds -\gamma - 3 \ln 2 - \frac \pi 2 \times 1 + 2 \times 0 \times \map \ln {\frac {\sqrt 2} 2}\) Cotangent of $45 \degrees$, Cosine of $90 \degrees$, Sine of $45 \degrees$ and Sum of Logarithms
\(\ds \) \(=\) \(\ds -\gamma - 3 \ln 2 - \dfrac \pi 2\)

$\blacksquare$


Proof 2

\(\ds \sum_{k \mathop = 1}^{n - 1} \map \psi {\frac k n}\) \(=\) \(\ds -\paren {n - 1} \gamma - n \ln n\) Digamma Additive Formula: Corollary
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^{4 - 1} \map \psi {\frac k 4}\) \(=\) \(\ds -\paren {4 - 1} \gamma - 4 \ln 4\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map \psi {\frac 1 4} + \map \psi {\frac 2 4} + \map \psi {\frac 3 4}\) \(=\) \(\ds -3 \gamma - 4 \ln 4\)
\(\text {(2)}: \quad\) \(\ds \map \psi {\frac 1 4} - \map \psi {\frac 3 4}\) \(=\) \(\ds -\pi \map \cot {\frac \pi 4}\) Digamma Reflection Formula
\(\ds \leadsto \ \ \) \(\ds 2 \map \psi {\frac 1 4} + \map \psi {\frac 1 2}\) \(=\) \(\ds -3 \gamma - 4 \ln 4 - \pi \map \cot {\frac \pi 4}\) adding lines $1$ and $2$
\(\ds \leadsto \ \ \) \(\ds 2 \map \psi {\frac 1 4}\) \(=\) \(\ds -3 \gamma - 4 \ln 4 - \pi \map \cot {\frac \pi 4} - \map \psi {\frac 1 2}\) subtracting $\map \psi {\frac 1 2}$ from both sides
\(\ds \) \(=\) \(\ds -3 \gamma - 8 \ln 2 - \pi \paren 1 - \paren {-\gamma - 2 \ln 2}\) Digamma Function of One Half, Logarithm of Power and Cotangent of $45 \degrees$
\(\ds \) \(=\) \(\ds -2 \gamma - 6 \ln 2 -\pi\)
\(\ds \leadsto \ \ \) \(\ds \map \psi {\frac 1 4}\) \(=\) \(\ds -\gamma - 3 \ln 2 - \dfrac \pi 2\) dividing by $2$

$\blacksquare$