Equivalence of Definitions of Ordering
Theorem
The following definitions of the concept of Ordering are equivalent:
Definition 1
$\RR$ is an ordering on $S$ if and only if $\RR$ satisfies the ordering axioms:
\((1)\) | $:$ | $\RR$ is reflexive | \(\ds \forall a \in S:\) | \(\ds a \mathrel \RR a \) | |||||
\((2)\) | $:$ | $\RR$ is transitive | \(\ds \forall a, b, c \in S:\) | \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \) | |||||
\((3)\) | $:$ | $\RR$ is antisymmetric | \(\ds \forall a, b \in S:\) | \(\ds a \mathrel \RR b \land b \mathrel \RR a \implies a = b \) |
Definition 2
$\RR$ is an ordering on $S$ if and only if $\RR$ satisfies the ordering axioms:
\((1)\) | $:$ | \(\ds \RR \circ \RR \) | |||||||
\((2)\) | $:$ | \(\ds \RR \cap \RR^{-1} = \Delta_S \) |
where:
- $\circ$ denotes relation composition
- $\RR^{-1}$ denotes the inverse of $\RR$
- $\Delta_S$ denotes the diagonal relation on $S$.
Proof 1
Definition 1 implies Definition 2
Let $\RR$ be a relation on $S$ satisfying:
\((1)\) | $:$ | $\RR$ is reflexive | \(\ds \forall a \in S:\) | \(\ds a \mathrel \RR a \) | |||||
\((2)\) | $:$ | $\RR$ is transitive | \(\ds \forall a, b, c \in S:\) | \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \) | |||||
\((3)\) | $:$ | $\RR$ is antisymmetric | \(\ds \forall a, b \in S:\) | \(\ds a \mathrel \RR b \land b \mathrel \RR a \implies a = b \) |
By Reflexive and Transitive Relation is Idempotent:
- $\RR \circ \RR = \RR$
By Relation is Antisymmetric and Reflexive iff Intersection with Inverse equals Diagonal Relation:
- $\RR \cap \RR^{-1} = \Delta_S$
Thus $\RR$ is an ordering by definition 2.
$\Box$
Definition 2 implies Definition 1
Let $\RR$ be a relation which fulfils the conditions:
- $(1): \quad \RR \circ \RR = \RR$
- $(2): \quad \RR \cap \RR^{-1} = \Delta_S$
By definition of set equality, it follows from $(1)$:
- $\RR \circ \RR \subseteq \RR$
Thus, by definition, $\RR$ is transitive.
By Relation is Antisymmetric and Reflexive iff Intersection with Inverse equals Diagonal Relation, it follows from $(2)$ that:
- $\RR$ is reflexive
- $\RR$ is antisymmetric.
Thus $\RR$ is an ordering by definition 1.
$\blacksquare$
Proof 2
Definition 1 implies Definition 2
Let $\RR$ be a relation on $S$ satisfying:
\((1)\) | $:$ | $\RR$ is reflexive | \(\ds \forall a \in S:\) | \(\ds a \mathrel \RR a \) | |||||
\((2)\) | $:$ | $\RR$ is transitive | \(\ds \forall a, b, c \in S:\) | \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \) | |||||
\((3)\) | $:$ | $\RR$ is antisymmetric | \(\ds \forall a \in S:\) | \(\ds a \mathrel \RR b \land b \mathrel \RR a \implies a = b \) |
Condition $(1)$
Let $\tuple {x, y} \in \RR \circ \RR$.
Then there exists a $z \in \RR$ such that:
- $\tuple {x, z}, \tuple {z, y} \in \RR$
By $\RR$ being transitive:
- $\tuple {x, y} \in \RR$
Hence:
- $\RR \circ \RR \subseteq \RR$
Now let $\tuple {x, y} \in \RR$.
By $\RR$ being reflexive:
- $\tuple {y, y} \in \RR$
Hence by the definition of relation composition:
- $\tuple {x, y} \in \RR \circ \RR$
Hence:
- $\RR \subseteq \RR \circ \RR$
Condition $(2)$
Follows immediately from Relation is Antisymmetric iff Intersection with Inverse is Coreflexive and $\RR$ being reflexive.
Thus $\RR$ is an ordering by definition 2.
$\Box$
Definition 2 implies Definition 1
Let $\RR$ be a relation which fulfils the conditions:
- $(1): \quad \RR \circ \RR = \RR$
- $(2): \quad \RR \cap \RR^{-1} = \Delta_S$
Reflexivity
By Intersection is Subset the condition:
- $\RR \cap \RR^{-1} = \Delta_S$
implies:
- $\Delta_S \subseteq \RR$
Thus $\RR$ is reflexive by definition.
Antisymmetry
By Relation is Antisymmetric iff Intersection with Inverse is Coreflexive the condition:
- $\RR \cap \RR^{-1} = \Delta_S$
implies that $\RR$ is antisymmetric.
Transitivity
Let $\tuple {x, y}, \tuple {y, z} \in \RR$.
Then by the definition of relation composition:
- $\tuple {x, z} \in \RR \circ \RR$
But by the condition:
- $\RR \circ \RR = \RR$
It follows that:
- $\tuple {x, z} \in \RR$
Hence $\RR$ is transitive.
Thus $\RR$ is an ordering by definition 1.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {III}$: The Natural Numbers: $\S 14$: Orderings: Exercise $14.27 \ \text {(a)}$