Equivalence of Definitions of Real Area Hyperbolic Cotangent

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Real Area Hyperbolic Cotangent are equivalent:

Definition 1

The inverse hyperbolic cotangent $\arcoth: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \arcoth x := y \in \R: x = \coth y$

where $\coth y$ denotes the hyperbolic cotangent function.

Definition 2

The inverse hyperbolic cotangent $\arcoth: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \arcoth x := \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }$

where $\ln$ denotes the natural logarithm of a (strictly positive) real number.


Proof

Definition 1 implies Definition 2

\(\ds x\) \(=\) \(\ds \coth y\)
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 x\) \(=\) \(\ds \tanh y\) Definition of Hyperbolic Cotangent
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \artanh \dfrac 1 x\)
\(\ds \) \(=\) \(\ds \dfrac 1 2 \map \ln {\dfrac {1 + \frac 1 x} {1 - \frac 1 x} }\) Definition of Real Area Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }\)

$\Box$


Definition 2 implies Definition 1

\(\ds y\) \(=\) \(\ds \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 2 \map \ln {\dfrac {1 + \frac 1 x} {1 - \frac 1 x} }\)
\(\ds \) \(=\) \(\ds \artanh \dfrac 1 x\) Definition of Real Area Hyperbolic Tangent
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 x\) \(=\) \(\ds \tanh y\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \coth y\) Definition of Real Area Hyperbolic Cotangent

$\Box$


Therefore:

\(\text {(1)}: \quad\) \(\ds x = \coth y\) \(\implies\) \(\ds y = \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }\) Definition 1 implies Definition 2
\(\text {(2)}: \quad\) \(\ds y = \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }\) \(\implies\) \(\ds x = \coth y\) Definition 2 implies Definition 1
\(\ds \leadsto \ \ \) \(\ds x = \coth y\) \(\iff\) \(\ds y = \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }\)

$\blacksquare$


Also see