Equivalence of Definitions of Real Area Hyperbolic Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ denote the open real interval:

$S := \openint {-1} 1$


The following definitions of the concept of Real Area Hyperbolic Tangent are equivalent:

Definition 1

The inverse hyperbolic tangent $\artanh: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \map \artanh x := y \in \R: x = \map \tanh y$

where $\map \tanh y$ denotes the hyperbolic tangent function.

Definition 2

The inverse hyperbolic tangent $\artanh: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \map \artanh x := \dfrac 1 2 \map \ln {\dfrac {1 + x} {1 - x} }$

where $\ln$ denotes the natural logarithm of a (strictly positive) real number.


Proof

Definition 1 implies Definition 2

Let $x = \tanh y$.

Then:

\(\ds x\) \(=\) \(\ds \frac {e^{2 y} - 1} {e^{2 y} + 1}\) Definition 3 of Hyperbolic Tangent
\(\ds \leadsto \ \ \) \(\ds x e^{2 y} + x\) \(=\) \(\ds e^{2 y} - 1\)
\(\ds \leadsto \ \ \) \(\ds e^{2 y} - x e^{2 y}\) \(=\) \(\ds 1 + x\)
\(\ds \leadsto \ \ \) \(\ds e^{2 y}\) \(=\) \(\ds \frac {1 + x} {1 - x}\)
\(\ds \leadsto \ \ \) \(\ds 2 y\) \(=\) \(\ds \map \ln {\frac {1 + x} {1 - x} }\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \frac 1 2 \map \ln {\frac {1 + x} {1 - x} }\)

$\Box$


Definition 2 implies Definition 1

Let $y = \dfrac {1 + x} {1 - x}$.

\(\ds \map \tanh {\frac 1 2 \map \ln {\frac {1 + x} {1 - x} } }\) \(=\) \(\ds \map \tanh {\frac 1 2 \ln y}\)
\(\ds \) \(=\) \(\ds \frac {e^{2 \paren {\frac 1 2 \ln y} - 1} } {e^{2 \paren {\frac 1 2 \ln y} + 1} }\) Definition 3 of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \frac {e^{\ln y} - 1} {e^{\ln y} + 1}\)
\(\ds \) \(=\) \(\ds \frac {y - 1} {y + 1}\) Exponential of Natural Logarithm
\(\ds \) \(=\) \(\ds \frac {\frac {1 + x} {1 - x} - 1} {\frac {1 + x} {1 - x} + 1}\)
\(\ds \) \(=\) \(\ds \frac {\paren {1 + x} - \paren {1 - x} } {\paren {1 + x} + \paren {1 - x} }\)
\(\ds \) \(=\) \(\ds \frac {2 x} 2\)
\(\ds \) \(=\) \(\ds x\)

$\Box$


Therefore:

\(\text {(1)}: \quad\) \(\ds x = y\) \(\implies\) \(\ds y = \frac 1 2 \map \ln {\frac {1 + x} {1 - x} }\) Definition 1 implies Definition 2
\(\text {(2)}: \quad\) \(\ds y = \frac 1 2 \map \ln {\frac {1 + x} {1 - x} }\) \(\implies\) \(\ds x = \tanh y\) Definition 2 implies Definition 1
\(\ds \leadsto \ \ \) \(\ds x = \tanh y\) \(\iff\) \(\ds y = \frac 1 2 \map \ln {\frac {1 + x} {1 - x} }\)

$\blacksquare$


Also see