Equivalence of Definitions of Real Area Hyperbolic Secant

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Real Area Hyperbolic Secant are equivalent:

Definition 1

The inverse hyperbolic secant $\sech^{-1}: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \map {\sech^{-1} } x := y \in \R_{\ge 0}: x = \map \sech y$

where $\map \sech y$ denotes the hyperbolic secant function.

Definition 2

The inverse hyperbolic secant $\sech^{-1}: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \map {\sech^{-1} } x := \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number.
$\sqrt {1 - x^2}$ denotes the positive square root of $1 - x^2$


Proof

Definition 1 implies Definition 2

\(\ds x\) \(=\) \(\ds \sech y\)
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 x\) \(=\) \(\ds \cosh y\) Definition of Hyperbolic Secant
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \map \ln {\dfrac 1 x + \sqrt {\paren {\dfrac 1 x}^2 - 1} }\) Definition of Real Inverse Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \map \ln {\dfrac 1 x + \sqrt {\dfrac {1 - x^2} {x^2} } }\)
\(\ds \) \(=\) \(\ds \map \ln {\dfrac 1 x + \dfrac {\sqrt {1 - x^2} } x}\) as $x > 1$
\(\ds \) \(=\) \(\ds \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}\)

$\Box$


Definition 2 implies Definition 1

\(\ds y\) \(=\) \(\ds \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}\)
\(\ds \) \(=\) \(\ds \map \ln {\dfrac 1 x + \sqrt {\dfrac {1 - x^2} {x^2} } }\)
\(\ds \) \(=\) \(\ds \map \ln {\dfrac 1 x + \sqrt {\paren {\dfrac 1 x}^2 - 1} }\)
\(\ds \) \(=\) \(\ds \arcosh \dfrac 1 x\) Definition of Real Area Hyperbolic Cosine
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 x\) \(=\) \(\ds \cosh y\) Definition of Hyperbolic Cosine
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \sech y\) Definition of Hyperbolic Secant

$\Box$


Therefore:

\(\text {(1)}: \quad\) \(\ds x = \sech y\) \(\implies\) \(\ds y = \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}\) Definition 1 implies Definition 2
\(\text {(2)}: \quad\) \(\ds y = \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}\) \(\implies\) \(\ds x = \sech y\) Definition 2 implies Definition 1
\(\ds \leadsto \ \ \) \(\ds x = \sech y\) \(\iff\) \(\ds y = \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}\)

$\blacksquare$


Also see