Exponential of Sum/Real Numbers/Lemma
Jump to navigation
Jump to search
Lemma
Let $x, y \in \R$.
Let $n \in \N_{> 0}$ such that $n > -\paren {x + y}$.
Then:
- $1 + \dfrac {x + y} n + \dfrac {x y} {n^2} = \paren {1 + \dfrac {x + y} n} \paren {1 + \dfrac {\paren {\frac {x y} {n + x + y} } } n}$
$\Box$
Proof
As $n \in \N_{> 0}$ we have that $n \ne 0$ and so the fractions in the expressions are defined.
\(\ds 1 + \frac {x + y} n + \frac {x y} {n^2}\) | \(=\) | \(\ds \frac {\paren {1 + \frac {x + y} n} \paren {1 + \frac {x + y} n + \frac {x y} {n^2} } } {1 + \frac {x + y} n}\) | multiplying and dividing by $1 + \dfrac {x + y} n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + \frac {x + y} n} \frac {\paren {1 + \frac {x + y} n + \frac {x y} {n^2} } } {\paren {1 + \frac {x + y} n} }\) | extracting a factor | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + \frac {x + y} n} \paren {\frac {n^2 + n x + n y + x y} {n^2 + n x + n y} }\) | multiplying top and bottom by $n^2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + \frac {x + y} n} \paren {1 + \frac {x y} {n^2 + n x + n y} }\) | Polynomial Long Division | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + \frac {x + y} n} \paren {1 + \frac {\paren {\frac {x y} {n + x + y} } } n}\) | dividing top and bottom by $n + x + y$ |
That final step is justified, as we have that $n > -\paren {x + y}$ and so $n + x + y \ne 0$.
$\blacksquare$
Also see
This lemma is used in:
- $\map \exp {x + y} = \paren {\exp x} \paren {\exp y}$
for real $x$ and $y$.