Exponential of Sum/Real Numbers/Proof 3
Theorem
Let $x, y \in \R$ be real numbers.
Let $\exp x$ be the exponential of $x$.
Then:
- $\map \exp {x + y} = \paren {\exp x} \paren {\exp y}$
Proof
Lemma
Let $x, y \in \R$.
Let $n \in \N_{> 0}$ such that $n > -\paren {x + y}$.
Then:
- $1 + \dfrac {x + y} n + \dfrac {x y} {n^2} = \paren {1 + \dfrac {x + y} n} \paren {1 + \dfrac {\paren {\frac {x y} {n + x + y} } } n}$
$\Box$
This proof assumes the definition of $\exp$ as defined by a limit of a sequence:
- $\exp x = \ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n$
From Powers of Group Elements we can presuppose the Exponent Combination Laws for natural number indices.
By definition:
\(\ds \paren {\exp x} \paren {\exp y}\) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n \lim_{n \mathop \to +\infty} \paren {1 + \frac y n}^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {\paren {1 + \frac x n} \paren {1 + \frac y n} }^n\) | Combination Theorem for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac{x + y} n + \frac{x y} {n^2} }^n\) |
Intuitively, the $\paren {1 + \dfrac {x + y} n}$ term is the most influential of the terms involved in the limit, and:
- $\paren {1 + \dfrac {x + y} n + \dfrac {x y} {n^2} }^n \to \paren {1 + \dfrac {x + y} n}^n$ as $n \to +\infty$
To formalize this claim:
- $\map \exp {x + y} = \exp x \cdot \exp y \iff \dfrac {\exp x \cdot \exp y} {\map \exp {x + y} } = 1$
\(\ds \frac {\paren {1 + \frac {x + y} n + \frac {x y} {n^2} }^n} {\paren {1 + \frac{x + y} n}^n}\) | \(=\) | \(\ds \paren {1 + \frac{x y} {n^2 + n x + n y} }^n\) | Lemma | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^n \binom n k \paren {\frac {x y} {n^2 + n x + n y} }^k\) | Binomial Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \sum_{k \mathop = 1}^n \binom n k n^{-k} \paren {\frac {x y} {n + x + y} }^k\) |
Now, as $n \to +\infty$, we use the Combination Theorem for Limits of Real Functions to investigate the behavior of this sequence, term by term.
As $1$ trivially converges to $1$, consider now the other terms of the sequence.
We invoke the Squeeze Theorem for Absolutely Convergent Series.
Hence it will suffice to investigate the limit behaviour of:
- $\ds \sum_{k \mathop = 1}^n \, \size {\binom n k n^{-k} \paren {\frac {x y} {n + x + y} }^k}$
From $\dbinom n k$ is not greater than $n^k$:
\(\ds \binom n k\) | \(\le\) | \(\ds n^k\) | for all $n, k$ here considered | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \binom n k n^{-k}\) | \(\le\) | \(\ds 1\) | divide both sides by $n^k$ |
Therefore, we may conclude, using Absolute Value is Bounded Below by Zero:
- $\ds 0 \le \sum_{k \mathop = 1}^n \size { {n \choose k} n^{-k} \paren {\frac {x y} {n + x + y} }^k} \le \sum_{k \mathop = 1}^n \size {\frac {x y} {n + x + y} }^k$
From Sum of Infinite Geometric Sequence, the right hand term converges to:
\(\ds \frac {\dfrac {x y} {n + x + y} } {1 - \dfrac {x y} {n + x + y} }\) | \(=\) | \(\ds \frac {x y} {n + x + y - x y}\) | ||||||||||||
\(\ds \) | \(\to\) | \(\ds 0\) | as $n \to +\infty$ |
- $0 \to 0$ as $n \to +\infty$, trivially.
This means:
- $\dfrac {\paren {1 + \dfrac {x + y} n + \dfrac {x y} {n^2} }^n} {\paren {1 + \dfrac {x + y} n}^n} \to 1$ as $n \to +\infty$
which is equivalent to our hypothesis:
- $\paren {1 + \dfrac {x + y} n + \dfrac {x y} {n^2} }^n \to \paren {1 + \dfrac {x + y} n}^n$ as $n \to +\infty$
$\blacksquare$