Exponential of Sum/Real Numbers
Theorem
Let $x, y \in \R$ be real numbers.
Let $\exp x$ be the exponential of $x$.
Then:
- $\map \exp {x + y} = \paren {\exp x} \paren {\exp y}$
Corollary
Let $x, y \in \R$ be real numbers.
Let $\exp x$ be the exponential of $x$.
Then:
- $\map \exp {x - y} = \dfrac {\exp x} {\exp y}$
Lemma
Let $x, y \in \R$.
Let $n \in \N_{> 0}$ such that $n > -\paren {x + y}$.
Then:
- $1 + \dfrac {x + y} n + \dfrac {x y} {n^2} = \paren {1 + \dfrac {x + y} n} \paren {1 + \dfrac {\paren {\frac {x y} {n + x + y} } } n}$
$\Box$
Proof 1
This proof assumes the definition of $\exp$ as:
- $\exp x = y \iff \ln y = x$
where:
- $\ln y = \ds \int_1^y \dfrac 1 t \rd t$
Let $X = \exp x$ and $Y = \exp y$.
From Sum of Logarithms, we have:
- $\ln X Y = \ln X + \ln Y = x + y$
From the Exponential of Natural Logarithm:
- $\map \exp {\ln x} = x$
Thus:
- $\map \exp {x + y} = \map \exp {\ln X Y} = X Y = \paren {\exp x} \paren {\exp y}$
$\blacksquare$
Alternatively, this may be proved directly by investigating:
- $\map D {\map \exp {x + y} / \exp x}$
Proof 2
This proof assumes the definition of $\exp$ as defined by a limit of a sequence:
- $\exp x = \ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n$
From Powers of Group Elements we can presuppose the Exponent Combination Laws for natural number indices.
First we introduce a lemma:
By definition:
\(\ds \paren {\exp x} \paren {\exp y}\) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n \lim_{n \mathop \to +\infty} \paren {1 + \frac y n}^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {\paren {1 + \frac x n} \paren {1 + \frac y n} }^n\) | Combination Theorem for Sequences | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac {x + y} n + \frac {x y} {n^2} }^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {\paren {1 + \frac {x + y} n} \paren {1 + \frac {\paren {\frac {x y} {n + x + y} } } n} }^n\) | Lemma: Without loss of generality let $n > - x - y$: therefore $n + x + y > 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac {x + y} n}^n \lim_{n \mathop \to +\infty} \paren {1 + \frac {\paren {\frac {x y} {n + x + y} } } n}^n\) | Combination Theorem for Sequences | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac {x + y} n}^n\) | Null Sequence in Exponential Sequence | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp {x + y}\) |
$\blacksquare$
Proof 3
This proof assumes the definition of $\exp$ as defined by a limit of a sequence:
- $\exp x = \ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n$
From Powers of Group Elements we can presuppose the Exponent Combination Laws for natural number indices.
By definition:
\(\ds \paren {\exp x} \paren {\exp y}\) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n \lim_{n \mathop \to +\infty} \paren {1 + \frac y n}^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {\paren {1 + \frac x n} \paren {1 + \frac y n} }^n\) | Combination Theorem for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac{x + y} n + \frac{x y} {n^2} }^n\) |
Intuitively, the $\paren {1 + \dfrac {x + y} n}$ term is the most influential of the terms involved in the limit, and:
- $\paren {1 + \dfrac {x + y} n + \dfrac {x y} {n^2} }^n \to \paren {1 + \dfrac {x + y} n}^n$ as $n \to +\infty$
To formalize this claim:
- $\map \exp {x + y} = \exp x \cdot \exp y \iff \dfrac {\exp x \cdot \exp y} {\map \exp {x + y} } = 1$
\(\ds \frac {\paren {1 + \frac {x + y} n + \frac {x y} {n^2} }^n} {\paren {1 + \frac{x + y} n}^n}\) | \(=\) | \(\ds \paren {1 + \frac{x y} {n^2 + n x + n y} }^n\) | Lemma | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^n \binom n k \paren {\frac {x y} {n^2 + n x + n y} }^k\) | Binomial Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \sum_{k \mathop = 1}^n \binom n k n^{-k} \paren {\frac {x y} {n + x + y} }^k\) |
Now, as $n \to +\infty$, we use the Combination Theorem for Limits of Real Functions to investigate the behavior of this sequence, term by term.
As $1$ trivially converges to $1$, consider now the other terms of the sequence.
We invoke the Squeeze Theorem for Absolutely Convergent Series.
Hence it will suffice to investigate the limit behaviour of:
- $\ds \sum_{k \mathop = 1}^n \, \size {\binom n k n^{-k} \paren {\frac {x y} {n + x + y} }^k}$
From $\dbinom n k$ is not greater than $n^k$:
\(\ds \binom n k\) | \(\le\) | \(\ds n^k\) | for all $n, k$ here considered | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \binom n k n^{-k}\) | \(\le\) | \(\ds 1\) | divide both sides by $n^k$ |
Therefore, we may conclude, using Absolute Value is Bounded Below by Zero:
- $\ds 0 \le \sum_{k \mathop = 1}^n \size { {n \choose k} n^{-k} \paren {\frac {x y} {n + x + y} }^k} \le \sum_{k \mathop = 1}^n \size {\frac {x y} {n + x + y} }^k$
From Sum of Infinite Geometric Sequence, the right hand term converges to:
\(\ds \frac {\dfrac {x y} {n + x + y} } {1 - \dfrac {x y} {n + x + y} }\) | \(=\) | \(\ds \frac {x y} {n + x + y - x y}\) | ||||||||||||
\(\ds \) | \(\to\) | \(\ds 0\) | as $n \to +\infty$ |
- $0 \to 0$ as $n \to +\infty$, trivially.
This means:
- $\dfrac {\paren {1 + \dfrac {x + y} n + \dfrac {x y} {n^2} }^n} {\paren {1 + \dfrac {x + y} n}^n} \to 1$ as $n \to +\infty$
which is equivalent to our hypothesis:
- $\paren {1 + \dfrac {x + y} n + \dfrac {x y} {n^2} }^n \to \paren {1 + \dfrac {x + y} n}^n$ as $n \to +\infty$
$\blacksquare$
Proof 4
This proof assumes the definition of $\exp$ as defined by an initial value problem.
That is, suppose $\exp$ satisfies:
- $(1): \quad D_x \exp x = \exp x$
- $(2): \quad \exp 0 = 1$
on $\R$.
Consider the real function $f: \R \to \R$ defined by:
- $\map f x := \dfrac {\map \exp {x + y} } {\map \exp y}$
From Exponential of Real Number is Strictly Positive, $f$ is well-defined.
So:
\(\ds D_x \, \map f x\) | \(=\) | \(\ds D_x \frac {\map \exp {x + y} } {\map \exp y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\map \exp y} D_x \, \map \exp {x + y}\) | Derivative of Constant Multiple | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \exp {x + y} } {\map \exp y}\) | Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \map f x\) |
Thus $f$ satisfies $(1)$.
Further:
\(\ds \map f 0\) | \(=\) | \(\ds \frac {\map \exp {0 + y} } {\map \exp y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \exp y} {\map \exp y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
So $f$ satisfies $(2)$.
From Exponential Function is Well-Defined:
- $f = \exp$
That is:
\(\ds \frac {\map \exp {x + y} } {\map \exp y}\) | \(=\) | \(\ds \map \exp x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \exp {x + y}\) | \(=\) | \(\ds \map \exp x \, \map \exp y\) |
$\blacksquare$
Proof 5
This proof assumes the definition of $\exp$ as a series.
Then:
\(\ds \map \exp {x + y}\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {n!} \paren {x + y}^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {n!} \sum_{k \mathop = 0}^n \frac {n!} {k! \paren {n - k}!} x^k y^{n - k}\) | Binomial Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \sum_{k \mathop = 0}^n \paren {\frac 1 {k!} x^k} \paren {\frac 1 {\paren {n - k}!} y^{n - k} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum_{n \mathop = 0}^\infty \frac {x^n} {n!} } \paren {\sum_{n \mathop = 0}^\infty \frac {y^n} {n!} }\) | Definition of Cauchy Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp x \, \map \exp y\) |
$\blacksquare$
Proof 6
Fix $a \in \R$ and define the function $f_a : \R \to \R$ by:
- $\map {f_a} x = \map \exp {a - x} \exp x$
for all $x \in \R$.
We aim to establish that:
- $\map {f_a} x = \map \exp {a - x} \exp x = \exp a$
for all $a, x \in \R$.
Then, we can fix $x, y \in \R$ and set $a = x + y$ to obtain:
- $\map {f_a} x = \exp y \exp x = \map \exp {x + y}$
which is the claim.
Note that $f_a$ is differentiable and we have:
\(\ds \map {f_a'} x\) | \(=\) | \(\ds \map {\frac \d {\d x} } {\map \exp {a - x} } \exp x + \map {\frac \d {\d x} } {\exp x} \map \exp {a - x}\) | Product Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds -\map \exp {a - x} \exp x + \exp x \map \exp {a - x}\) | Chain Rule for Derivatives, Derivative of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
From Zero Derivative implies Constant Function, $f_a$ is constant.
That is, there exists $C \in \R$ such that:
- $\map {f_a} x = C$
for all $x \in \R$.
We have:
\(\ds \map {f_a} a\) | \(=\) | \(\ds \map \exp {a - a} \exp a\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \exp 0 \exp a\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \exp a\) | Exponential of Zero |
So:
- $\map {f_a} x = \exp a$
for all $a, x \in \R$.
That is:
- $\map \exp {a - x} \map \exp x = \exp a$
for all $a, x \in \R$.
Hence the result.
$\blacksquare$