General Solution to Chebyshev's Differential Equation
Theorem
Consider Chebyshev's differential equation:
- $(1): \quad \ds \paren {1 - x^2} \frac {\d^2 y} {\d x^2} - x \frac {\d y} {\d x} + n^2 y = 0$
where $n \in \N$.
The general solution to $(1)$ is given by:
- $y = \begin {cases} A \map {T_n} x + B \sqrt {1 - x^2} \, \map {U_{n - 1} } x + C \map \cos {n \arcsin x} + D \map \sin {n \arcsin x} & : n = 1, 2, 3, \ldots \\ \\ A \arccos x + B \arcsin x + C & : n = 0 \end {cases}$
where:
- $\map {T_n} x$ denotes the Chebyshev polynomial of the first kind of order $n$
- $\map {U_n} x$ denotes the Chebyshev polynomial of the second kind of order $n$
- $\size x < 1$
Proof
First a Lemma:
Chebyshev's differential equation:
- $\quad \ds \paren {1 - x^2} \frac {\d^2 y} {\d x^2} - x \frac {\d y} {\d x} + n^2 y = 0$
can be depressed down to:
- $\ds \frac {\d^2 y} {\d \theta^2} + n^2 y = 0$
by substituting either:
- $x = \sin \theta$
or:
- $x = \cos \theta$
$\Box$
Let $n = 0$.
In our Lemma, we assumed that either $x = \sin \theta$ or $x = \cos \theta$.
Assuming $x = \cos \theta$, then:
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(=\) | \(\ds \frac {\d^2 y} {\d \theta^2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds A \theta + D\) | Primitive of Constant twice | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds A \arccos x + D\) | substituting $x = \cos \theta$, that is, $\theta = \arccos x$ |
Assuming $x = \sin \theta$, then:
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(=\) | \(\ds \frac {\d^2 y} {\d \theta^2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds B \theta + E\) | Primitive of Constant twice | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds B \arcsin x + E\) | substituting $x = \sin \theta$, that is, $\theta = \arcsin x$ |
From Linear Combination of Solutions to Homogeneous Linear 2nd Order ODE, we have that a linear combination of particular solutions to a homogeneous linear second order ODE is also a particular solution to that ODE.
Therefore:
\(\ds y\) | \(=\) | \(\ds \paren {A \arccos x + D} + \paren {B \arcsin x + E}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds A \arccos x + B \arcsin x + C\) | Linear Combination of Solutions to Homogeneous Linear 2nd Order ODE |
$\Box$
In our Lemma, we assumed that either $x = \sin \theta$ or $x = \cos \theta$.
We note here that since $x = \sin \theta$ or $x = \cos \theta$, then from Real Sine Function is Bounded and Real Cosine Function is Bounded:
- $\size x \le 1$
If $n = 0$ and $x = \pm 1$, then Chebyshev's differential equation reduces to:
- $\pm \dfrac {\d y} {\d x} = 0$
From Derivative of Arccosine Function, we have:
- $\dfrac {\d y} {\d x} = -\dfrac A {\sqrt {\paren {1 - x^2} } }$
From Derivative of Arcsine Function, we have:
- $\dfrac {\d y} {\d x} = \dfrac B {\sqrt {\paren {1 - x^2} } }$
The derivative is not defined at $x = \pm 1$ under either assumption, therefore:
- $\size x < 1$
$\Box$
Now let $n > 0$.
Assuming $x = \cos \theta$.
Then:
\(\ds 0\) | \(=\) | \(\ds \frac {\d^2 y} {\d \theta^2} + n^2 y\) | Lemma: using $x = \cos \theta$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds A \map \cos {n \theta} + B \map \sin {n \theta}\) | Linear Second Order ODE: $y' ' + k^2 y = 0$ | ||||||||||
\(\ds \) | \(=\) | \(\ds A \map \cos {n \arccos x} + B \map \sin {n \arccos x}\) | substituting $x = \cos \theta$, that is, $\theta = \arccos x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds A \map \cos {n \arccos x} + B \map \sin {\arccos x} \, \dfrac {\map \sin {n \arccos x} } {\map \sin {\arccos x} }\) | multiplying top and bottom by $\map \sin {\arccos x}$ and rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds A \map \cos {n \arccos x} + B \sqrt {1 - \paren {\map \cos {\arccos x} }^2 } \, \dfrac {\map \sin {n \arccos x} } {\map \sin {\arccos x} }\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds A \map {T_n} x + B \sqrt {1 - x^2} \, \map {U_{n - 1} } x\) | Definition of Chebyshev Polynomial of the First Kind and Definition of Chebyshev Polynomial of the Second Kind |
Assuming $x = \sin \theta$.
Then:
\(\ds 0\) | \(=\) | \(\ds \frac {\d^2 y} {\d \theta^2} + n^2 y\) | Lemma: using $x = \sin \theta$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds C \map \cos {n \theta} + D \map \sin {n \theta}\) | Linear Second Order ODE: $y' ' + k^2 y = 0$ | ||||||||||
\(\ds \) | \(=\) | \(\ds C \map \cos {n \arcsin x} + D \map \sin {n \arcsin x}\) | substituting $x = \sin \theta$, that is, $\theta = \arcsin x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds C \map \cos {n \arcsin x} + D \map \sin {n \arcsin x}\) |
Once again, from Linear Combination of Solutions to Homogeneous Linear 2nd Order ODE, we have that a linear combination of particular solutions to a homogeneous linear second order ODE is also a particular solution to that ODE.
Therefore:
\(\ds y\) | \(=\) | \(\ds \paren {A \map {T_n} x + B \sqrt {1 - x^2} \, \map {U_{n - 1} } x } + \paren {C \map \cos {n \arcsin x} + D \map \sin {n \arcsin x} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds A \map {T_n} x + B \sqrt {1 - x^2} \, \map {U_{n - 1} } x + C \map \cos {n \arcsin x} + D \map \sin {n \arcsin x}\) | Linear Combination of Solutions to Homogeneous Linear 2nd Order ODE |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 30$: Chebyshev Polynomials: General Solution of Chebyshev's Differential Equation: $30.46$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 31$: Chebyshev Polynomials: General Solution of Chebyshev's Differential Equation: $31.46.$