General Solution to Chebyshev's Differential Equation/Lemma
Jump to navigation
Jump to search
Lemma for General Solution to Chebyshev's Differential Equation
Chebyshev's differential equation:
- $\quad \ds \paren {1 - x^2} \frac {\d^2 y} {\d x^2} - x \frac {\d y} {\d x} + n^2 y = 0$
can be depressed down to:
- $\ds \frac {\d^2 y} {\d \theta^2} + n^2 y = 0$
by substituting either:
- $x = \sin \theta$
or:
- $x = \cos \theta$
Proof 1
Let:
\(\ds x\) | \(=\) | \(\ds \cos \theta\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \d x\) | \(=\) | \(\ds -\sin \theta \rd \theta\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d \theta} {\d x}\) | \(=\) | \(\ds -\frac 1 {\sin \theta}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d^2 \theta} {\d x \d \theta}\) | \(=\) | \(\ds \frac {\cos \theta} {\sin^2 \theta}\) | Derivative of Cosecant Function |
Then:
\(\ds 0\) | \(=\) | \(\ds \paren {1 - \cos^2 \theta} \frac {\d } {\d x} \paren {\frac {\d y} {\d \theta} \frac {\d \theta} {\d x} } - \cos \theta \frac {\d y} {\d \theta} \frac {\d \theta} {\d x} + n^2 y\) | substituting $x = \cos \theta$ and Chain Rule for Derivatives into Chebyshev's differential equation | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 - \cos^2 \theta} \frac {\d \theta} {\d x} \map {\frac \d {\d \theta} } {\frac {\d y} {\d \theta} \frac {\d \theta} {\d x} } - \cos \theta \frac {\d y} {\d \theta} \frac {\d \theta} {\d x} + n^2 y\) | Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 - \cos^2 \theta} \dfrac {\d \theta} {\d x} \paren {\frac {\d^2 y} {\d \theta^2} \dfrac {\d \theta} {\d x} + \frac {\d y} {\d \theta} \frac {\d^2 \theta} {\d x \d \theta} } - \cos \theta \frac {\d y} {\d \theta} \frac {\d \theta} {\d x} + n^2 y\) | Product Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sin^2 \theta} \paren {-\frac 1 {\sin \theta} } \paren {\frac {\d^2 y} {\d \theta^2} \paren {-\frac 1 {\sin \theta} } + \frac {\d y} {\d \theta} \frac {\cos \theta} {\sin^2 \theta} } - \cos \theta \frac {\d y} {\d \theta} \paren {-\frac 1 {\sin \theta} } + n^2 y\) | Sum of Squares of Sine and Cosine and substituting $\ds \frac {\d \theta} {\d x} = -\frac 1 {\sin \theta}$ and $\ds \frac {\d^2 \theta} {\d x \d \theta} = \frac {\cos \theta} {\sin^2 \theta}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\d^2 y} {\d \theta^2} - \frac {\d y} {\d \theta} \frac {\cos \theta } {\sin \theta} + \frac {\d y} {\d \theta} \frac {\cos \theta } {\sin \theta} + n^2 y\) | simplification: cancelling $\sin^2 \theta$ from top and bottom | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(=\) | \(\ds \frac {\d^2 y} {\d \theta^2} + n^2 y\) |
$\blacksquare$
Proof 2
Let:
\(\ds x\) | \(=\) | \(\ds \sin \theta\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \d x\) | \(=\) | \(\ds \cos \theta \rd \theta\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d \theta} {\d x}\) | \(=\) | \(\ds \frac 1 {\cos \theta}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d^2 \theta} {\d x \d \theta}\) | \(=\) | \(\ds \frac {\sin \theta} {\cos^2 \theta}\) | Derivative of Secant Function |
Then:
\(\ds 0\) | \(=\) | \(\ds \paren {1 - \sin^2 \theta} \frac {\d } {\d x} \paren {\frac {\d y} {\d \theta} \frac {\d \theta} {\d x} } - \sin \theta \frac {\d y} {\d \theta} \frac {\d \theta} {\d x} + n^2 y\) | substituting $x = \sin \theta$ and Chain Rule for Derivatives into Chebyshev's differential equation | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 - \sin^2 \theta} \frac {\d \theta} {\d x} \map {\frac \d {\d \theta} } {\frac {\d y} {\d \theta} \frac {\d \theta} {\d x} } - \sin \theta \frac {\d y} {\d \theta} \frac {\d \theta} {\d x} + n^2 y\) | Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 - \sin^2 \theta} \dfrac {\d \theta} {\d x} \paren {\frac {\d^2 y} {\d \theta^2} \dfrac {\d \theta} {\d x} + \frac {\d y} {\d \theta} \frac {\d^2 \theta} {\d x \d \theta} } - \sin \theta \frac {\d y} {\d \theta} \frac {\d \theta} {\d x} + n^2 y\) | Product Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\cos^2 \theta} \paren {\frac 1 {\cos \theta} } \paren {\frac {\d^2 y} {\d \theta^2} \paren {\frac 1 {\cos \theta} } + \frac {\d y} {\d \theta} \frac {\sin \theta} {\cos^2 \theta} } - \sin \theta \frac {\d y} {\d \theta} \paren {\frac 1 {\cos \theta} } + n^2 y\) | Sum of Squares of Sine and Cosine and substituting $\ds \frac {\d \theta} {\d x} = \frac 1 {\cos \theta}$ and $\ds \frac {\d^2 \theta} {\d x \d \theta} = \frac {\sin \theta} {\cos^2 \theta}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\d^2 y} {\d \theta^2} - \frac {\d y} {\d \theta} \frac {\sin \theta } {\cos \theta} + \frac {\d y} {\d \theta} \frac {\sin \theta } {\cos \theta} + n^2 y\) | simplification: cancelling $\cos^2 \theta$ from top and bottom | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(=\) | \(\ds \frac {\d^2 y} {\d \theta^2} + n^2 y\) |
$\blacksquare$