Hilbert Space Direct Sum is Hilbert Space
Theorem
Let $\sequence {H_i}_{i \mathop \in I}$ be a $I$-indexed family of Hilbert spaces over $\Bbb F \in \set {\R, \C}$.
Let $H = \ds \bigoplus_{i \mathop \in I} H_i$ be their Hilbert space direct sum.
Then $H$ is a Hilbert space.
Proof
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
![]() | Work In Progress In particular: I think some of the partial results are up on their own pages now, and thus can be replaced by a reference (or this should become the case). Furthermore, this is *so* long, transclusions and/or foldable templates are a must You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by completing it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{WIP}} from the code. |
$H$ is a Vector Space
From the definition of Hilbert space direct sum, we see that $H$ is a nonempty subset of a vector space (namely, the direct sum of the $H_i$ as vector spaces).
From the Two-Step Vector Subspace Test it follows that it is to be shown that:
- $(1): \quad \forall h_1, h_2 \in H: \ds \sum \set {\norm {\map {\paren {h_1 + h_2} } i}^2_{H_i}: i \in I} < \infty$
- $(2): \quad \forall \lambda \in \Bbb F, h \in H: \ds \sum \set {\norm {\map {\paren {\lambda h} } i}^2_{H_i}: i \in I } < \infty$
Considering $(1)$, have the following:
\(\ds \norm {\map {\paren {h_1 + h_2} } i}^2_{H_i}\) | \(=\) | \(\ds \norm {\map {h_1} i + \map {h_2} i}^2_{H_i}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \paren {\norm {\map {h_1} i}_{H_i} + \norm {\map {h_2} i}_{H_i} }^2\) | Triangle inequality for $\norm {\, \cdot \,}_{H_i}$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum \set {\norm {\map {\paren {h_1 + h_2} } i}^2_{H_i}: i \in I}\) | \(\le\) | \(\ds \sum \set {\paren {\norm {\map {h_1} i}_{H_i} + \norm {\map {h_2} i}_{H_i} }^2: i \in I}\) | Generalized Sum Preserves Inequality | ||||||||||
\(\ds \) | \(<\) | \(\ds \infty\) | $h_1, h_2 \in H$, Square-Summable Indexed Sets Closed Under Addition |
For $(2)$, observe that:
\(\ds \norm {\map {\paren {\lambda h} } i}^2_{H_i}\) | \(=\) | \(\ds \size \lambda^2 \norm {\map h i}^2_{H_i}\) | $\norm {\, \cdot \,}_{H_i}$ is a norm | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum \set {\norm {\map {\paren {\lambda h} } i}^2_{H_i}: i \in I}\) | \(\le\) | \(\ds \size \lambda^2 \sum set {\norm {\map h i}^2_{H_i}: i \in I}\) | Generalized Sum is Linear | ||||||||||
\(\ds \) | \(<\) | \(\ds \infty\) | As $h \in H$ |
Thus, by the Two-Step Vector Subspace Test, $H$ is a vector space.
$\Box$
$\innerprod \cdot \cdot$ is an Inner Product
It suffices to check well-definedness of $\innerprod \cdot \cdot$, and subsequently the five properties of an inner product.
Well-definedness
It is necessary to verify that for $g, h \in H$, in fact $\innerprod g h \in \Bbb F$.
That is, it is required to show that $\innerprod g h = \ds \sum \set {\innerprod {\map g i} {\map h i}_{H_i}: i \in I}$ converges in $\Bbb F$.
Absolutely Convergent Generalized Sum Converges applies to the Banach space $\Bbb F$ and the $I$-indexed subset $\innerprod {\map g i} {\map h i}_{H_i}$ of $\Bbb F$.
Hence it will suffice to show that $\ds \sum \set {\size {\innerprod {\map g i} {\map h i}_{H_i} }: i \in I}$ converges in $\R$.
For brevity, denote already $\norm h^2$ for the expression $\ds \sum \set {\norm {\map h i}_{H_i}^2: i \in I}$.
Define $g' \in H$ by $\map {g'} i = \begin{cases}
\map g i & \text{if } \norm {\map g i}_{H_i} \ge \norm {\map h i}_{H_i} \\
\mathbf 0_{H_i} & \text{otherwise}
\end{cases}$.
Note that $\norm {g'}^2 \le \norm g^2$ by Generalized Sum Preserves Inequality.
Similarly, let $h' \in H$ be defined by $\map {h'} i = \begin{cases} \map h i & \text{if } \norm {\map h i}_{H_i} > \norm {\map g i}_{H_i} \\ \mathbf 0_{H_i} & \text{otherwise} \end{cases}$
By Generalized Sum Preserves Inequality again, we have:
- $\norm {h'}^2 \le \norm h^2$
More significantly, by construction of $g', h'$:
- $(3): \quad \norm {\map g i}_{H_i}, \norm {\map h i}_{H_i} \le \norm {\map {\paren {g' + h'} } i}_{H_i}$
As $H$ is a vector space, $g' + h' \in H$, and we can establish:
\(\ds \size {\innerprod {\map g i} {\map h i}_{H_i} }\) | \(\le\) | \(\ds \norm {\map g i}_{H_i} \norm {\map h i}_{H_i}\) | Cauchy-Bunyakovsky-Schwarz Inequality | |||||||||||
\(\ds \) | \(\le\) | \(\ds \norm {\map {\paren {g' + h'} } i}_{H_i}^2\) | Equation $(3)$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum \set {\size {\innerprod {\map g i} {\map h i}_{H_i} }: i \in I}\) | \(\le\) | \(\ds \sum \set {\norm {\map {\paren {g' + h'} } i}_{H_i}^2: i \in I}\) | Generalized Sum Preserves Inequality |
Hence, for all $g, h \in H$, $\innerprod g h \in \Bbb F$ by the comment on Generalized Sum Preserves Inequality.
$\Box$
Property 1: $\innerprod g h = \overline {\innerprod h g}$
\(\ds \innerprod g h\) | \(=\) | \(\ds \sum \set {\innerprod {\map g i} {\map h i}_{H_i}: i \in I}\) | Definition of $\innerprod \cdot \cdot$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum \set {\overline {\innerprod {\map h i} {\map g i}_{H_i} }: i \in I}\) | $\innerprod \cdot \cdot_{H_i}$ is an inner product | |||||||||||
\(\ds \) | \(=\) | \(\ds \overline{ \sum \set {\innerprod {\map h i} {\map g i}_{H_i}: i \in I} }\) | Convergence of Generalized Sum of Complex Numbers: Corollary | |||||||||||
\(\ds \) | \(=\) | \(\ds \overline {\innerprod h g}\) | Definition of $\innerprod \cdot \cdot$ |
$\Box$
Property 2: $\innerprod {\lambda g} h = \lambda \innerprod g h$
\(\ds \innerprod {\lambda g} h\) | \(=\) | \(\ds \sum \set {\innerprod {\map {\paren {\lambda g} } i} {\map h i}_{H_i}: i \in I}\) | Definition of $\innerprod \cdot \cdot$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum \set {\lambda \innerprod {\map g i} {\map h i}_{H_i}: i \in I}\) | $\innerprod \cdot \cdot_{H_i}$ is an inner product | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \sum \set {\innerprod {\map g i} {\map h i}_{H_i}: i \in I}\) | Generalized Sum is Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \innerprod h g\) | Definition of $\innerprod \cdot \cdot$ |
$\Box$
Property 3: $\innerprod {g_1 + g_2} h = \innerprod {g_1} h + \innerprod {g_2} h$
\(\ds \innerprod {g_1 + g_2} h\) | \(=\) | \(\ds \sum \set {\innerprod {\map {\paren {g_1 + g_2} } i} {\map h i}_{H_i}: i \in I}\) | Definition of $\innerprod \cdot \cdot$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum \set {\innerprod {\map {g_1} i} {\map h i}_{H_i} + \innerprod {\map {g_2} i} {\map h i}_{H_i}: i \in I}\) | $\innerprod \cdot \cdot_{H_i}$ is an inner product | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum \set {\innerprod {\map {g_1} i} {\map h i}_{H_i}: i \in I} + \sum \set {\innerprod {\map {g_2} i} {\map h i}_{H_i}: i \in I}\) | Generalized Sum is Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod {g_1} h + \innerprod {g_1} h\) | Definition of $\innerprod \cdot \cdot$ |
$\Box$
Property 4: $\innerprod h h \ge 0$
\(\ds \innerprod h h\) | \(=\) | \(\ds \sum \set {\innerprod {\map h i} {\map h i}_{H_i}: i \in I}\) | Definition of $\innerprod \cdot \cdot$ | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \sum \set {0: i \in I}\) | $\innerprod \cdot \cdot_{H_i}$ is an inner product, Generalized Sum Preserves Inequality | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\Box$
Property 5: $\innerprod h h = 0$ if and only if $h = \mathbf 0_H$
\(\ds \innerprod h h\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \forall i \in I: \, \) | \(\ds \innerprod {\map h i} {\map h i}_{H_i}\) | \(=\) | \(\ds 0\) | $\innerprod \cdot \cdot_{H_i}$ is an inner product, Generalized Sum is Monotone | |||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \forall i \in I: \, \) | \(\ds \map h i\) | \(=\) | \(\ds \mathbf 0_{H_i}\) | $\innerprod \cdot \cdot_{H_i}$ is an inner product | |||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds h\) | \(=\) | \(\ds \mathbf 0_H\) |
$\Box$
Conclusion
$\innerprod \cdot \cdot$ is checked to be a mapping from $H \times H$ to $\Bbb F$, satisfying the five conditions for an inner product.
That is, $\innerprod \cdot \cdot$ is an inner product on $H$.
$\Box$
$H$ is complete
A Hilbert space is a complete inner product space.
Thus, it remains to verify that $H$ is complete.
Suppose $\sequence {h_n}_{n \mathop \in \N}$ is a Cauchy sequence in $H$.
Let $N \in \N$ such that $n, m \ge N \implies \size {h_n - h_m} < \epsilon$.
That is:
- $\ds \sum \set {\norm {\map {\paren {h_n - h_m} } i}_{H_i}^2: i \in I} < \epsilon^2$.
From Generalized Sum is Monotone obtain that, for all $i \in I$:
- $\norm {\map {\paren {h_n - h_m} } i}_{H_i}^2 < \epsilon^2$
It follows that $\sequence {\map {h_n} i}_{n \mathop \in \N}$ is a Cauchy sequence in $H_i$.
$H_i$ is a Hilbert space, hence complete.
Hence there is some $h_i \in H_i$ such that $\ds \lim_{n \mathop \to \infty} \map {h_n} i = h_i$.
Now let $h$ be defined by $\map h i = h_i$; it is the only candidate for $\ds \lim_{n \mathop \to \infty} h_n = h$.
It remains to be shown that indeed $\ds \lim_{n \mathop \to \infty} h_n = h$, and then that $h \in H$.
So, for any $\epsilon > 0$, an $N \in \N$ is to be found such that for all $n \ge N$:
- $(4): \quad \ds \sum \set {\norm {\map {\paren {h_n - h} } i}_{H_i}^2: i \in I} < \epsilon^2$
To this end, let $N \in \N$ be such that:
- $(5): \quad n, m \ge N \implies \size {h_n - h_m}^2 < \frac {\epsilon^2} 2$
Such an $N$ exists as $\sequence {h_n}_{n \mathop \in \N}$ is a Cauchy sequence.
Now observe that, for any finite $G \subseteq I$ and $n \ge N$:
\(\ds \forall i \in I: \, \) | \(\ds \norm {\map {\paren {h_n - h} } i}_{H_i}^2\) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \norm {\map {\paren {h_n - h_m} } i}_{H_i}^2\) | Definition of $\map h i$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{i \mathop \in G} \norm {\map {\paren {h_n - h} } i}_{H_i}^2\) | \(=\) | \(\ds \sum_{i \mathop \in G} \lim_{m \mathop \to \infty} \norm {\map {\paren {h_n - h_m} } i}_{H_i}^2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \sum_{i \mathop \in G} \norm {\map {\paren {h_n - h_m} } i}_{H_i}^2\) | Sum Rule for Sequences | |||||||||||
\(\ds \) | \(\le\) | \(\ds \lim_{m \mathop \to \infty} \sum \set {\norm {\map {\paren {h_n - h_m} } i}_{H_i}^2 : i \in I}\) | Generalized Sum is Monotone | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \size {h_n - h_m}^2\) | Definition of $\norm {\, \cdot \,}$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds \frac {\epsilon^2} 2\) | Upper and Lower Bounds of Sequences |
The last inequality follows from $(5)$, as $m \ge N$ eventually when $m \to \infty$.
From Bounded Generalized Sum Converges, it now follows that:
- $\ds \sum \set {\norm {\map {\paren {h_n - h} } i}_{H_i}^2 : i \in I} \le \frac {\epsilon^2} 2 < \epsilon^2$
This precisely establishes the inequality desired in $(4)$ for $n \ge N$.
It follows that $\ds \lim_{n \mathop \to \infty} h_n = h$.
To show that $h \in H$, it is to be shown that $\norm h^2 < \infty$.
This is done as follows:
\(\ds \norm h^2\) | \(=\) | \(\ds \sum \set {\norm {\map h i}_{H_i}^2 : i \in I}\) | Definition of $\norm {\, \cdot \,}$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds \sum \set {\paren {\norm {\map {\paren {h - h_n} } i}_{H_i} + \norm {\map {h_n} i}_{H_i} }^2 : i \in I}\) | Triangle Inequality for all $\norm {\, \cdot \,}_{H_i}$, Generalized Sum Preserves Inequality |
The latter sum converges by Square-Summable Indexed Sets Closed Under Addition, yielding convergence of $\norm h^2$.
Therefore, $h \in H$.
That is, every Cauchy sequence in $H$ converges to a limit in $H$, hence $H$ is complete.
By definition, $H$ is a Hilbert space.
$\blacksquare$
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next) $\S I.6$