Image of Intersection under Injection/Proof 2
Theorem
Let $S$ and $T$ be sets.
Let $f: S \to T$ be a mapping.
Then:
- $\forall A, B \subseteq S: f \sqbrk {A \cap B} = f \sqbrk A \cap f \sqbrk B$
if and only if $f$ is an injection.
This can be expressed in the language and notation of direct image mappings as:
- $\forall A, B \subseteq S: \map {f^\to} {A \cap B} = \map {f^\to} A \cap \map {f^\to} B$
Proof
From Image of Intersection under Mapping:
- $f \sqbrk {A \cap B} \subseteq f \sqbrk A \cap f \sqbrk B$
which holds for all mappings.
It remains to be shown that:
- $f \sqbrk A \cap f \sqbrk B \subseteq f \sqbrk {A \cap B}$
if and only if $f$ is an injection.
Sufficient Condition
Suppose that:
- $\forall A, B \subseteq S: f \sqbrk {A \cap B} = f \sqbrk A \cap f \sqbrk B$
If $S$ is singleton, then $f$ is a fortiori an injection from Mapping from Singleton is Injection.
So, assume $S$ is not singleton.
Aiming for a contradiction, suppose $f$ is specifically not an injection.
Then:
- $\exists x, y \in S: \exists z \in T: \tuple {x, z} \in T, \tuple {y, z} \in T, x \ne y$
and of course $\set x \subseteq S, \set y \subseteq S$.
So:
- $z \in f \sqbrk {\set x}$
- $z \in f \sqbrk {\set y}$
and so by definition of intersection:
- $z \in f \sqbrk {\set x} \cap f \sqbrk {\set y}$
But:
- $\set x \cap \set y = \O$
Thus from a corollary to Image of Empty Set is Empty Set:
- $f \sqbrk {\set x \cap \set y} = \O$
and so:
- $f \sqbrk {\set x \cap \set y} \ne f \sqbrk {\set x} \cap f \sqbrk {\set y}$
But by hypothesis:
- $\forall A, B \subseteq S: f \sqbrk {A \cap B} = f \sqbrk A \cap f \sqbrk B$
From this contradiction it follows that $f$ is an injection.
$\Box$
Necessary Condition
Let $f$ be an injection.
It is necessary to show:
- $f \sqbrk {S_1} \cap f \sqbrk {S_2} \subseteq f \sqbrk {S_1 \cap S_2}$
Let $t \in f \sqbrk {S_1} \cap f \sqbrk {S_2}$.
Then:
\(\ds t\) | \(\in\) | \(\ds f \sqbrk {S_1} \cap f \sqbrk {S_2}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds t\) | \(\in\) | \(\ds f \sqbrk {S_1}\) | Definition of Set Intersection | ||||||||||
\(\, \ds \land \, \) | \(\ds t\) | \(\in\) | \(\ds f \sqbrk {S_2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists s_1 \in S_1, s_2 \in S_2: \, \) | \(\ds t\) | \(=\) | \(\ds \map f {s_1}\) | Definition of Image of Subset under Mapping | |||||||||
\(\, \ds \land \, \) | \(\ds t\) | \(=\) | \(\ds \map f {s_2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map f {s_1}\) | \(=\) | \(\ds \map f {s_2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds s_1\) | \(=\) | \(\ds s_2\) | Definition of Injection | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds s_1 = s_2\) | \(\in\) | \(\ds S_1\) | |||||||||||
\(\, \ds \land \, \) | \(\ds s_1 = s_2\) | \(\in\) | \(\ds S_2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds s_1 = s_2\) | \(\in\) | \(\ds S_1 \cap S_2\) | Definition of Set Intersection | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map f {s_1} = \map f {s_2}\) | \(\in\) | \(\ds f \sqbrk {S_1 \cap S_2}\) | Image of Element is Subset | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds f \sqbrk {S_1} \cap f \sqbrk {S_2}\) | \(\subseteq\) | \(\ds f \sqbrk {S_1 \cap S_2}\) | Definition of Subset |
So if $f$ is an injection, it follows that:
- $f \sqbrk {S_1 \cap S_2} = f \sqbrk {S_1} \cap f \sqbrk {S_2}$
$\Box$
Putting the results together, we see that:
- $f \sqbrk {S_1 \cap S_2} = f \sqbrk {S_1} \cap f \sqbrk {S_2}$ if and only if $f$ is an injection.
$\blacksquare$
Sources
- 1975: Bert Mendelson: Introduction to Topology (3rd ed.) ... (previous) ... (next): Chapter $1$: Theory of Sets: $\S 6$: Functions: Exercise $2 \ \text{(c})$
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $2.1$