Integer Multiplication is Well-Defined/Proof 2
Jump to navigation
Jump to search
Theorem
Integer multiplication is well-defined.
Proof
Consider the formal definition of the integers: $x = \eqclass {a, b} {}$ is an equivalence class of ordered pairs of natural numbers.
Consider the mapping $\phi: \N_{>0} \to \Z_{>0}$ defined as:
- $\forall u \in \N_{>0}: \map \phi u = u'$
where $u' \in \Z$ is the (strictly) positive integer $\eqclass {b + u, b} {}$.
Let:
- $v' = \eqclass {c + v, c} {}$
Then:
\(\ds u' v'\) | \(=\) | \(\ds \eqclass {b + u, b} {} \times \eqclass {c + v, c} {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {\paren {b + u} \paren {c + v} + b c, \paren {b + u} c + b \paren {c + v} } {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {b c + b v + c u + u v + b c, b c + u c + b c + b v} {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {b c + u v, b c} {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {b + u v, b} {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {u v}'\) |
$\blacksquare$
Sources
- 1951: Nathan Jacobson: Lectures in Abstract Algebra: Volume $\text { I }$: Basic Concepts ... (previous) ... (next): Introduction $\S 5$: The system of integers