Integer Multiplication is Well-Defined
![]() | It has been suggested that this page or section be merged into Multiplication of Cross-Relation Equivalence Classes on Natural Numbers is Well-Defined. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Mergeto}} from the code. |
Theorem
Integer multiplication is well-defined.
Proof 1
Let us define $\eqclass {\tuple {a, b} } \boxtimes$ as in the formal definition of integers.
That is, $\eqclass {\tuple {a, b} } \boxtimes$ is an equivalence class of ordered pairs of natural numbers under the congruence relation $\boxtimes$.
$\boxtimes$ is the congruence relation defined on $\N \times \N$ by $\tuple {x_1, y_1} \boxtimes \tuple {x_2, y_2} \iff x_1 + y_2 = x_2 + y_1$.
In order to streamline the notation, we will use $\eqclass {a, b} {}$ to mean $\eqclass {\tuple {a, b} } \boxtimes$, as suggested.
We need to show that $\eqclass {a, b} {} = \eqclass {p, q} {} \land \eqclass {c, d} {} = \eqclass {r, s} {} \implies \eqclass {a, b} {} \times \eqclass {c, d} {} = \eqclass {p, q} {} \times \eqclass {r, s} {}$.
We have $\eqclass {a, b} {} = \eqclass {p, q} {} \land \eqclass {c, d} {} = \eqclass {r, s} {} \iff a + q = b + p \land c + s = d + r$ by the definition of $\boxtimes$.
From the definition of integer multiplication, we have:
- $\forall a, b, c, d \in \N: \eqclass {a, b} {} \times \eqclass {c, d} {} = \eqclass {a c + b d, a d + b c} {}$
So, suppose that $\eqclass {a, b} {} = \eqclass {p, q} {}$ and $\eqclass {c, d} {} = \eqclass {r, s} {}$.
Both $+$ and $\times$ are commutative and associative on $\N$. Thus:
\(\ds \) | \(\) | \(\ds \paren {a c + b d + p s + q r} + \paren {p c + q c + p d + q d}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a + q} c + \paren {b + p} d + p \paren {c + s} + q \paren {d + r}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {b + p} c + \paren {a + q} d + p \paren {d + r} + q \paren {c + s}\) | as $a + q = b + p, c + s = d + r$ | |||||||||||
\(\ds \) | \(=\) | \(\ds b c + p c + q d + a d + p d + p r + q c + q s\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a d + b c + p r + q s} + \paren {p c + q c + p d + q d}\) |
So we have $a c + b d + p s + q r = a d + b c + p r + q s$ and so, by the definition of $\boxtimes$, we have:
- $\eqclass {a c + b d, a d + b c} {} = \eqclass {p r + q s, p s + q r} {}$
So, by the definition of integer multiplication, this leads to:
- $\eqclass {a, b} {} \times \eqclass {c, d} {} = \eqclass {p, q} {} \times \eqclass {r, s} {}$
Thus integer multiplication has been shown to be well-defined.
$\blacksquare$
Proof 2
Consider the formal definition of the integers: $x = \eqclass {a, b} {}$ is an equivalence class of ordered pairs of natural numbers.
Consider the mapping $\phi: \N_{>0} \to \Z_{>0}$ defined as:
- $\forall u \in \N_{>0}: \map \phi u = u'$
where $u' \in \Z$ is the (strictly) positive integer $\eqclass {b + u, b} {}$.
Let:
- $v' = \eqclass {c + v, c} {}$
Then:
\(\ds u' v'\) | \(=\) | \(\ds \eqclass {b + u, b} {} \times \eqclass {c + v, c} {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {\paren {b + u} \paren {c + v} + b c, \paren {b + u} c + b \paren {c + v} } {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {b c + b v + c u + u v + b c, b c + u c + b c + b v} {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {b c + u v, b c} {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {b + u v, b} {}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {u v}'\) |
$\blacksquare$