Primitive of Exponential Function
Jump to navigation
Jump to search
Theorem
- $\ds \int e^x \rd x = e^x + C$
where $C$ is an arbitrary constant.
General Result
Let $a \in \R_{>0}$ be a constant such that $a \ne 1$.
Then:
- $\ds \int a^x \rd x = \frac {a^x} {\ln a} + C$
where $C$ is an arbitrary constant.
Proof for Real Numbers
Let $x \in \R$ be a real variable.
\(\ds \map {\dfrac \d {\d x} } {e^x}\) | \(=\) | \(\ds e^x\) | Derivative of Exponential Function |
The result follows by the definition of the primitive.
$\blacksquare$
Proof for Complex Numbers
Let $z \in \C$ be a complex variable.
\(\ds \map {D_z} {e^z}\) | \(=\) | \(\ds e^z\) | Definition of Complex Exponential Function |
The result follows by the definition of the primitive.
$\blacksquare$
Examples
Primitive of $e^{1 - x}$
- $\ds \int e^{1 - x} \rd x = -e^{1 - x} + C$
Also see
Sources
- 1945: A. Geary, H.V. Lowry and H.A. Hayden: Advanced Mathematics for Technical Students, Part I ... (previous) ... (next): Chapter $\text {III}$: Integration: Integration
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Integration
- 1967: Michael Spivak: Calculus ... (previous) ... (next): Part $\text {III}$: Derivatives and Integrals: Chapter $18$: Integration in Elementary Terms
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.9$
- 1972: Frank Ayres, Jr. and J.C. Ault: Theory and Problems of Differential and Integral Calculus (SI ed.) ... (previous) ... (next): Chapter $25$: Fundamental Integration Formulas: $7$.
- 1974: Murray R. Spiegel: Theory and Problems of Advanced Calculus (SI ed.) ... (previous) ... (next): Chapter $5$. Integrals: Integrals of Special Functions: $14$
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $6$. Integral Calculus: Appendix: Table of Fundamental Standard Integrals
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: General Rules of Integration: $16.9.$
- For a video presentation of the contents of this page, visit the Khan Academy.