Matroid Bases Iff Satisfies Formulation 1 of Matroid Base Axiom/Lemma 1

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\mathscr B$ be a non-empty set of subsets of $S$ satisfying formulation $1$ of base axiom:

\((\text B 1)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \)      


Let $B_1, B_2 \in \mathscr B$.

Let $U \subseteq B_1$ and $V \subseteq B_2$ such that:

$\card V < \card U$

Let $B_2 \cap \paren{U \setminus V} = \O$.


Then:

$\exists B_3 \in \mathscr B$:
$V \subseteq B_3$
$\card{B_1 \cap B_3} > \card{B_1 \cap B_2}$


Proof

Lemma 2

$\forall B_1, B_2 \in \mathscr B : \card{B_1} = \card{B_2}$

where $\card{B_1}$ and $\card{B_2}$ denote the cardinality of the sets $B_1$ and $B_2$ respectively.

$\Box$


From Larger Set has Larger Set Difference:

$(1):\quad \card {V \setminus U} < \card {U \setminus V}$


We have:

\(\ds \card {B_1}\) \(=\) \(\ds \card{ \paren{B_1 \cap B_2} \cup \paren{B_1 \setminus B_2} }\) Set Difference Union Intersection
\(\text {(2)}: \quad\) \(\ds \) \(=\) \(\ds \card{B_1 \cap B_2} + \card{B_1 \setminus B_2}\) Set Difference and Intersection are Disjoint and Corollary to Cardinality of Set Union

and

\(\ds \card {B_2}\) \(=\) \(\ds \card{ \paren{B_2 \cap B_1} \cup \paren{B_2 \setminus B_1} }\) Set Difference Union Intersection
\(\ds \) \(=\) \(\ds \card{B_2 \cap B_1} + \card{B_2 \setminus B_1}\) Set Difference and Intersection are Disjoint and Corollary to Cardinality of Set Union
\(\ds \) \(=\) \(\ds \card{B_2 \cap B_1} + \card{\paren{\paren{B_2 \setminus B_1} \cap V} \cup \paren{\paren{B_2 \setminus B_1} \setminus V} }\) Set Difference Union Intersection
\(\ds \) \(=\) \(\ds \card{B_2 \cap B_1} + \card{\paren{B_2 \setminus B_1} \cap V} + \card{\paren{B_2 \setminus B_1} \setminus V}\) Set Difference and Intersection are Disjoint and Corollary to Cardinality of Set Union
\(\text {(3)}: \quad\) \(\ds \) \(=\) \(\ds \card{B_2 \cap B_1} + \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V}\) Intersection with Set Difference is Set Difference with Intersection

and

\(\ds U \setminus V\) \(\subseteq\) \(\ds U\)
\(\ds \) \(\subseteq\) \(\ds B_1\)
\(\ds \leadsto \ \ \) \(\ds U \setminus V\) \(\subseteq\) \(\ds B_1 \setminus B_2\) Subset of Set Difference iff Disjoint Set and $B_2 \cap \paren{U \setminus V} = \O$
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \card{U \setminus V}\) \(\le\) \(\ds \card{B_1 \setminus B_2}\) Cardinality of Subset of Finite Set


We have:

\(\ds 0\) \(=\) \(\ds \card{B_2} - \card{B_1}\) Lemma 2
\(\ds \) \(=\) \(\ds \card{B_2 \cap B_1} + \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{B_1 \cap B_2} - \card{B_1 \setminus B_2}\) from $(2)$ and $(3)$
\(\ds \) \(=\) \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{B_1 \setminus B_2}\) Canceling terms
\(\ds \) \(\le\) \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{U \setminus V}\) from $(4)$
\(\ds \) \(<\) \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{V \setminus U}\) from $(1)$
\(\ds \) \(\le\) \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{V \setminus B_1}\) As $U \subseteq B_1$
\(\ds \) \(=\) \(\ds \card{\paren{B_2 \setminus B_1} \setminus V}\) Canceling terms


From the contrapositive statement of Cardinality of Empty Set:

$\paren{B_2 \setminus B_1} \setminus V \ne \O$

Hence:

$\exists y \in \paren{B_2 \setminus B_1} \setminus V$

From $(\text B 1)$:

$\exists z \in B_1 \setminus B_2 : \paren{B_2 \setminus \set y} \cup \set z \in \mathscr B$


Let:

$B_3 = \paren{B_2 \setminus \set y} \cup \set z$


We have:

\(\ds V\) \(\subseteq\) \(\ds B_2 \setminus \set y\) As $y \notin V$ and $V \subseteq B_2$
\(\ds \) \(\subseteq\) \(\ds \paren{B_2 \setminus \set y} \cup \set z\) Set is Subset of Union
\(\ds \) \(=\) \(\ds B_3\)


From Finite Set Formed by Substitution has Larger Intersection:

$\card{B_1 \cap B_3} = \card{B_1 \cap B_2} + 1$


Hence:

$\card{B_1 \cap B_3} > \card{B_1 \cap B_2}$

$\blacksquare$