Matroid Bases Iff Satisfies Formulation 1 of Matroid Base Axiom/Lemma 1
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ be a finite set.
Let $\mathscr B$ be a non-empty set of subsets of $S$ satisfying formulation $1$ of base axiom:
\((\text B 1)\) | $:$ | \(\ds \forall B_1, B_2 \in \mathscr B:\) | \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \) |
Let $B_1, B_2 \in \mathscr B$.
Let $U \subseteq B_1$ and $V \subseteq B_2$ such that:
- $\card V < \card U$
Let $B_2 \cap \paren{U \setminus V} = \O$.
Then:
- $\exists B_3 \in \mathscr B$:
- $V \subseteq B_3$
- $\card{B_1 \cap B_3} > \card{B_1 \cap B_2}$
Proof
Lemma 2
- $\forall B_1, B_2 \in \mathscr B : \card{B_1} = \card{B_2}$
where $\card{B_1}$ and $\card{B_2}$ denote the cardinality of the sets $B_1$ and $B_2$ respectively.
$\Box$
From Larger Set has Larger Set Difference:
- $(1):\quad \card {V \setminus U} < \card {U \setminus V}$
We have:
\(\ds \card {B_1}\) | \(=\) | \(\ds \card{ \paren{B_1 \cap B_2} \cup \paren{B_1 \setminus B_2} }\) | Set Difference Union Intersection | |||||||||||
\(\text {(2)}: \quad\) | \(\ds \) | \(=\) | \(\ds \card{B_1 \cap B_2} + \card{B_1 \setminus B_2}\) | Set Difference and Intersection are Disjoint and Corollary to Cardinality of Set Union |
and
\(\ds \card {B_2}\) | \(=\) | \(\ds \card{ \paren{B_2 \cap B_1} \cup \paren{B_2 \setminus B_1} }\) | Set Difference Union Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{B_2 \cap B_1} + \card{B_2 \setminus B_1}\) | Set Difference and Intersection are Disjoint and Corollary to Cardinality of Set Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{B_2 \cap B_1} + \card{\paren{\paren{B_2 \setminus B_1} \cap V} \cup \paren{\paren{B_2 \setminus B_1} \setminus V} }\) | Set Difference Union Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{B_2 \cap B_1} + \card{\paren{B_2 \setminus B_1} \cap V} + \card{\paren{B_2 \setminus B_1} \setminus V}\) | Set Difference and Intersection are Disjoint and Corollary to Cardinality of Set Union | |||||||||||
\(\text {(3)}: \quad\) | \(\ds \) | \(=\) | \(\ds \card{B_2 \cap B_1} + \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V}\) | Intersection with Set Difference is Set Difference with Intersection |
and
\(\ds U \setminus V\) | \(\subseteq\) | \(\ds U\) | ||||||||||||
\(\ds \) | \(\subseteq\) | \(\ds B_1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds U \setminus V\) | \(\subseteq\) | \(\ds B_1 \setminus B_2\) | Subset of Set Difference iff Disjoint Set and $B_2 \cap \paren{U \setminus V} = \O$ | ||||||||||
\(\text {(4)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \card{U \setminus V}\) | \(\le\) | \(\ds \card{B_1 \setminus B_2}\) | Cardinality of Subset of Finite Set |
We have:
\(\ds 0\) | \(=\) | \(\ds \card{B_2} - \card{B_1}\) | Lemma 2 | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{B_2 \cap B_1} + \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{B_1 \cap B_2} - \card{B_1 \setminus B_2}\) | from $(2)$ and $(3)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{B_1 \setminus B_2}\) | Canceling terms | |||||||||||
\(\ds \) | \(\le\) | \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{U \setminus V}\) | from $(4)$ | |||||||||||
\(\ds \) | \(<\) | \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{V \setminus U}\) | from $(1)$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V} - \card{V \setminus B_1}\) | As $U \subseteq B_1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \card{\paren{B_2 \setminus B_1} \setminus V}\) | Canceling terms |
From the contrapositive statement of Cardinality of Empty Set:
- $\paren{B_2 \setminus B_1} \setminus V \ne \O$
Hence:
- $\exists y \in \paren{B_2 \setminus B_1} \setminus V$
From $(\text B 1)$:
- $\exists z \in B_1 \setminus B_2 : \paren{B_2 \setminus \set y} \cup \set z \in \mathscr B$
Let:
- $B_3 = \paren{B_2 \setminus \set y} \cup \set z$
We have:
\(\ds V\) | \(\subseteq\) | \(\ds B_2 \setminus \set y\) | As $y \notin V$ and $V \subseteq B_2$ | |||||||||||
\(\ds \) | \(\subseteq\) | \(\ds \paren{B_2 \setminus \set y} \cup \set z\) | Set is Subset of Union | |||||||||||
\(\ds \) | \(=\) | \(\ds B_3\) |
From Finite Set Formed by Substitution has Larger Intersection:
- $\card{B_1 \cap B_3} = \card{B_1 \cap B_2} + 1$
Hence:
- $\card{B_1 \cap B_3} > \card{B_1 \cap B_2}$
$\blacksquare$