# Monotone Real Function with Everywhere Dense Image is Continuous

## Theorem

Let $I$ and $J$ be real intervals.

Let $f: I \to J$ be a monotone real function.

Let $f \sqbrk I$ be everywhere dense in $J$, where $f \sqbrk I$ denotes the image of $I$ under $f$.

Then $f$ is continuous on $I$.

## Proof

Let $f$ be increasing.

Aiming for a contradiction, suppose $f$ is discontinuous at $c \in I$.

Let:

$L^-$ denote $\displaystyle \lim_{x \mathop \to c^-} \map f x$
$L$ denote $\map f c$
$L^+$ denote $\displaystyle \lim_{x \mathop \to c^+} \map f x$

From Discontinuity of Monotonic Function is Jump Discontinuity, $L^-$ and $L^+$ are (finite) real numbers.

Since $f$ is increasing:

$L^- \le L \le L^+$

Let $S = \openint {L^-} {L^+}$.

If $L^- = L = L^+$, then $c$ is not a discontinuity, a contradiction.

Thus $S$ is non-degenerate.

From Non-Degenerate Real Interval is Infinite, $S$ is infinite.

From Relative Difference between Infinite Set and Finite Set is Infinite, $S \setminus \set L$ is non-empty.

From Finite Subset of Metric Space is Closed, $\set L$ is closed.

From Open Set minus Closed Set is Open, $S \setminus \set L$ is open.

### Lemma

$\displaystyle \openint {\lim_{x \mathop \to c^-} \map f x} {\lim_{x \mathop \to c+ } \map f x} \cap f \sqbrk I \subseteq \set {\map f c}$

$\Box$

Thus:

 $\ds S \cap f \sqbrk I$ $\subseteq$ $\ds \set L$ Lemma $\ds \leadsto \ \$ $\ds \paren {S \cap f \sqbrk I} \setminus \set L$ $\subseteq$ $\ds \set L \setminus \set L$ Set Difference over Subset $\ds$ $=$ $\ds \O$ Set Difference with Self is Empty Set $\ds \leadsto \ \$ $\ds \paren {S \cap f \sqbrk I} \setminus \set L$ $=$ $\ds \O$ Subset of Empty Set iff Empty $\ds \leadsto \ \$ $\ds \O$ $=$ $\ds \paren {S \cap f \sqbrk I \setminus \set L}$ Equality is Symmetric $\ds$ $=$ $\ds \paren { S \setminus \set L} \cap f \sqbrk I$ Intersection with Set Difference is Set Difference with Intersection $\ds$ $=$ $\ds \paren {\paren {\openint {L^-} L \cup \set L \cup \openint L {L^+} } \setminus \set L} \cap f \sqbrk I$ Break $S$ into $3$ disjoint open intervals $\ds$ $=$ $\ds \paren {\paren {\openint {L^-} L \cup \openint L {L^+} } \setminus \set L} \cap f \sqbrk I$ Set Difference with Union is Set Difference $\ds$ $=$ $\ds \paren {\openint {L^-} L \cup \openint L {L^+} } \cap f \sqbrk I$ Set Difference with Disjoint Set

Thus there exists a non-empty open subset of $f \sqbrk I$ that is disjoint from $Y$.

From Open Set Characterization of Denseness, $f \sqbrk I$ is not everywhere dense in $J$.

This contradicts the hypothesis that $f \sqbrk I$ is everywhere dense in $J$.

Therefore $I$ contains no discontinuities, by Proof by Contradiction.

The same argument, mutatis mutandis, proves the case where $f$ is decreasing

Hence the result, by Proof by Cases.

$\blacksquare$