Ordinal Multiplication is Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y, z$ be ordinals.

Let $\times$ denote ordinal multiplication.


Then:

$x \times \paren {y \times z} = \paren {x \times y} \times z$


Proof

The proof shall proceed by Transfinite Induction on $z$:


Basis for the Induction

Let $0$ denote the zero ordinal.

\(\ds x \times \paren {y \times 0}\) \(=\) \(\ds x \times 0\) Ordinal Multiplication by Zero
\(\ds \) \(=\) \(\ds 0\) Ordinal Multiplication by Zero
\(\ds \) \(=\) \(\ds \paren {x \times y} \times 0\) Ordinal Multiplication by Zero

This proves the basis for the induction.


Induction Step

\(\ds x \times \paren {y \times z}\) \(=\) \(\ds \paren {x \times y} \times z\) Inductive Hypothesis
\(\ds \leadsto \ \ \) \(\ds x \times \paren {y \times z^+}\) \(=\) \(\ds x \times \paren {\paren {y \times z} + y}\) Definition of Ordinal Multiplication
\(\ds \) \(=\) \(\ds x \times \paren {y \times z} + \paren {x \times y}\) Ordinal Multiplication is Left Distributive
\(\ds \) \(=\) \(\ds \paren {x \times y} \times z + \paren {x \times y}\) Inductive Hypothesis
\(\ds \) \(=\) \(\ds \paren {x \times y} \times z^+\) Definition of Ordinal Multiplication

This proves the induction step.


Limit Case

The inductive hypothesis for the limit case states that:

$\forall w \in Z: x \times \paren {y \times w} = \paren {x \times y} \times w$

where $z$ is a limit ordinal.


The proof shall proceed by cases:


Case 1

If $y = 0$, then:

\(\ds x \times \paren {y \times z}\) \(=\) \(\ds x \times 0\) Ordinal Multiplication by Zero
\(\ds \) \(=\) \(\ds 0\) Ordinal Multiplication by Zero
\(\ds \) \(=\) \(\ds 0 \times z\) Ordinal Multiplication by Zero
\(\ds \) \(=\) \(\ds \paren {x \times y} \times z\) Ordinal Multiplication by Zero


Case 2

If $y \ne 0$, then $y \times z$ is a limit ordinal by Limit Ordinals Preserved Under Ordinal Multiplication.


It follows that:

\(\ds x \times \paren {y \times z}\) \(=\) \(\ds \bigcup_{u \mathop < \paren {y \times z} } x \times u\) Definition of Ordinal Multiplication
\(\ds \paren {x \times y} \times z\) \(=\) \(\ds \bigcup_{w \mathop < z} \paren {x \times y} \times w\) Definition of Ordinal Multiplication


If $u < \paren {y \times z}$, then $u < \paren {y \times w}$ for some $w \in z$ by Ordinal is Less than Ordinal times Limit.

\(\ds x \times u\) \(\le\) \(\ds x \times \paren {y \times w}\) Membership is Left Compatible with Ordinal Multiplication
\(\ds \) \(=\) \(\ds \paren {x \times y} \times w\) Inductive Hypothesis
\(\ds \) \(\le\) \(\ds \paren {x \times y} \times z\) Subset is Right Compatible with Ordinal Multiplication


Generalizing, the result follows for all $u \in \paren {y \times z}$.

Therefore by Supremum Inequality for Ordinals:

$x \times \paren {y \times z} \le \paren {x \times y} \times z$


Conversely, take any $w < z$.

\(\ds \paren {x \times y} \times w\) \(=\) \(\ds x \times \paren {y \times w}\) Inductive Hypothesis
\(\ds \) \(\le\) \(\ds x \times \paren {y \times z}\) Membership is Left Compatible with Ordinal Multiplication


It follows by Supremum Inequality for Ordinals that:

$\paren {x \times y} \times z \le x \times \paren {y \times z}$


By definition of set equality:

$x \times \paren {y \times z} = \paren {x \times y} \times z$


This proves the limit case.

$\blacksquare$


Sources