Perimeter of Ellipse
Jump to navigation
Jump to search
Theorem
Let $K$ be an ellipse whose major axis is of length $2 a$ and whose minor axis is of length $2 b$.
The perimeter $\PP$ of $K$ is given by:
- $\PP = 4 a \map E e$
where:
- $\ds \map E e = \int_0^{\pi / 2} \sqrt{1 - e^2 \sin^2 \theta} \rd \theta$ is the complete elliptic integral of the second kind
- $e = \dfrac {\sqrt {a^2 - b^2} } a$ is the eccentricity of $K$.
Approximation
The perimeter $\PP$ of $K$ can be approximated by the formula:
- $\PP \approx 2 \pi \sqrt {\dfrac {a^2 + b^2} 2}$
Proof
Let $K$ be aligned in a cartesian plane such that:
- the major axis of $K$ is aligned with the $x$-axis
- the minor axis of $K$ is aligned with the $y$-axis.
Then from Equation of Ellipse in Reduced Form: parametric form:
- $x = a \cos \theta, y = b \sin \theta$
Thus:
\(\ds \frac {\d x} {\d \theta}\) | \(=\) | \(\ds -a \sin \theta\) | Derivative of Cosine Function | |||||||||||
\(\ds \frac {\d y} {\d \theta}\) | \(=\) | \(\ds b \cos \theta\) | Derivative of Sine Function |
From Arc Length for Parametric Equations, the length of one quarter of the perimeter of $K$ is given by:
\(\ds \frac {\PP} 4\) | \(=\) | \(\ds \int_0^{\pi / 2} \sqrt {\paren {-a \sin \theta}^2 + \paren {b \cos \theta}^2} \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\pi / 2} \sqrt {a^2 \paren {1 - \cos^2 \theta} + b^2 \cos^2 \theta} \rd \theta\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\pi / 2} \sqrt {a^2 - \paren {a^2 - b^2} \cos^2 \theta} \rd \theta\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds a \int_0^{\pi / 2} \sqrt {1 - \paren {1 - \frac {b^2} {a^2} } \cos^2 \theta} \rd \theta\) | extracting $a$ as a factor | |||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds a \int_0^{\pi / 2} \sqrt {1 - k^2 \cos^2 \theta} \rd \theta\) | setting $k^2 = 1 - \dfrac {b^2} {a^2} = \dfrac {a^2 - b^2} {a^2}$ |
Since $\cos \theta = \map \sin {\dfrac \pi 2 - \theta}$ we can write for any real function $\map f x$:
- $\ds \int_0^{\pi / 2} \map f {\cos \theta} \rd \theta = \int_0^{\pi / 2} \map f {\map \sin {\frac \pi 2 - \theta} } \rd \theta$
So substituting $t = \dfrac \pi 2 - \theta$ this can be converted to:
\(\ds \int_0^{\pi / 2} \map f {\cos \theta} \rd \theta\) | \(=\) | \(\ds -\int_{\pi / 2}^0 \map f {\sin t} \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^{\pi / 2} \map f {\sin t} \rd t\) |
justifying the fact that $\cos$ can be replaced with $\sin$ in $(1)$ above, giving:
- $\ds \PP = 4 a \int_0^{\pi / 2} \sqrt {1 - k^2 \sin^2 \theta} \rd \theta$
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 4$: Geometric Formulas: Ellipse of Semi-major Axis $a$ and Semi-minor Axis $b$: $4.23$
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $1$: The Nature of Differential Equations: $\S 5$: Falling Bodies and Other Rate Problems: Problem $5$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): elliptic integral
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 7$: Geometric Formulas: Ellipse of Semi-major Axis $a$ and Semi-minor Axis $b$: $7.23.$