Power Series Expansion for Logarithm of 1 + x
Jump to navigation
Jump to search
Theorem
The Newton-Mercator series defines the natural logarithm function as a power series expansion:
\(\ds \map \ln {1 + x}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac {x^n} n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x - \frac {x^2} 2 + \frac {x^3} 3 - \frac {x^4} 4 + \cdots\) |
valid for all $x \in \R$ such that $-1 < x \le 1$.
Corollary
\(\ds \map \ln {1 - x}\) | \(=\) | \(\ds -\sum_{n \mathop = 1}^\infty \frac {x^n} n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -x - \frac {x^2} 2 - \frac {x^3} 3 - \frac {x^4} 4 - \cdots\) |
valid for $-1 < x < 1$.
Proof
From Sum of Infinite Geometric Sequence, putting $-x$ for $x$:
- $(1): \quad \ds \sum_{n \mathop = 0}^\infty \paren {-x}^n = \frac 1 {1 + x}$
for $-1 < x < 1$.
From Power Series Converges Uniformly within Radius of Convergence, $(1)$ is uniformly convergent on every closed interval within the interval $\openint {-1} 1$.
From Power Series is Termwise Integrable within Radius of Convergence, $(1)$ can be integrated term by term:
\(\ds \int_0^x \frac 1 {1 + t} \rd t\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \int_0^x \paren {-t}^n \rd t\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \ln {1 + x}\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{n + 1} } {n + 1}\) | Primitive of Reciprocal and Integral of Power | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \ln {1 + x}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac {x^n} n\) | letting $n \to n - 1$ |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Series for Exponential and Logarithmic Functions: $20.17$
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $8$. Taylor Series and Power Series: Appendix: Table $8.2$: Power Series of Important Functions
- 1992: Larry C. Andrews: Special Functions of Mathematics for Engineers (2nd ed.) ... (previous) ... (next): $\S 1.3.2$: Power series: $(1.41)$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.9$: Generating Functions: $(24)$