Power Series Expansion for Hyperbolic Tangent Function
Jump to navigation
Jump to search
Theorem
The hyperbolic tangent function has a Taylor series expansion:
\(\ds \tanh x\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x - \frac {x^3} 3 + \frac {2 x^5} {15} - \frac {17 x^7} {315} + \frac {62 x^9} {2835} - \cdots\) |
where $B_{2 n}$ denotes the Bernoulli numbers.
This converges for $\size x < \dfrac \pi 2$.
Proof
From Power Series Expansion for Hyperbolic Cotangent Function:
- $(1): \quad \coth x = \ds \sum_{n \mathop = 0}^\infty \frac {2^{2 n} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}$
Then:
\(\ds \tanh x\) | \(=\) | \(\ds 2 \coth 2 x - \coth x\) | Sum of Hyperbolic Tangent and Cotangent | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \sum_{n \mathop = 0}^\infty \frac {2^{2 n} B_{2 n} \, \paren {2 x}^{2 n - 1} } {\paren {2 n}!} - \sum_{n \mathop = 0}^\infty \frac {2^{2 n} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\) | by $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\) | the term in $n = 0$ vanishes |
$\Box$
By Combination Theorem for Limits of Real Functions we can deduce the following.
\(\ds \) | \(\) | \(\ds \lim_{n \mathop \to \infty} \size {\frac {\frac {2^{2 n + 2} \paren {2^{2 n + 2} - 1} B_{2 n + 2} \, x^{2 n + 1} } {\paren {2 n + 2} !} } {\frac {2^{2 n} \paren {2^{2 n} - 1} B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {\frac {\paren {2^{2 n + 2} - 1} } {\paren {2^{2 n} - 1} } \frac 1 {\paren {2 n + 1} \paren {2 n + 2} } \frac {B_{2 n + 2} } {B_{2 n} } } 4 x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {\frac {2^{2 n + 2} - 1} {2^{2 n} - 1} } \size {\frac 1 {\paren {2 n + 1} \paren {n + 1} } \frac {B_{2 n + 2} } {B_{2 n} } } 2 x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {4 \frac {2^{2 n} } {2^{2 n} - 1} - \frac 1 {2^{2 n} - 1} } \size {\frac 1 {\paren {2 n + 1} \paren {n + 1} } \frac {B_{2 n + 2} } {B_{2 n} } } 2 x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {4 + \frac 4 {2^{2 n} - 1} - \frac 1 {2^{2 n} - 1} } \size {\frac 1 {\paren {2 n + 1} \paren {n + 1} } \frac {B_{2 n + 2} } {B_{2 n} } } 2 x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {\frac 1 {\paren {2 n + 1} \paren {n + 1} } \frac {B_{2 n + 2} } { B_{2 n} } } 8 x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {\frac 1 {\paren {2 n + 1} \paren {n + 1} } \frac {\paren {-1}^{n + 2} 4 \sqrt {\pi (n + 1)} \paren {\frac {n + 1} {\pi e} }^{2 n + 2} } {\paren {-1}^{n + 1} 4 \sqrt {\pi n} \paren {\frac n {\pi e} }^{2 n} } } 8 x^2\) | Asymptotic Formula for Bernoulli Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {\frac {\paren {n + 1}^2} {\paren {2 n + 1} \paren {n + 1} } \sqrt {\frac {n + 1} n } \paren {\frac {n + 1} n}^{2 n} } \frac 8 {\pi^2 e^2} x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {\paren {\frac {n + 1} n}^{2 n} } \frac 4 {\pi^2 e^2} x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} \size {\paren {\paren {1 + \frac 1 n}^n}^2} \frac 4 {\pi^2 e^2} x^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {4 e^2} {\pi^2 e^2} x^2\) | Definition of Euler's Number as Limit of Sequence | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 4 {\pi^2} x^2\) |
This is less than $1$ if and only if:
- $\size x < \dfrac \pi 2$
Hence by the Ratio Test, the series converges for $\size x < \dfrac \pi 2$.
$\blacksquare$
Also presented as
The Power Series Expansion for Hyperbolic Tangent Function can also be presented in the form:
\(\ds \tanh x\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} 2^{2 n} \paren {2^{2 n} - 1} {B_n}^* x^{2 n - 1} } {\paren {2 n}!}\) |
where ${B_n}^*$ denotes the archaic form of the Bernoulli numbers.
Also see
- Power Series Expansion for Hyperbolic Sine Function
- Power Series Expansion for Hyperbolic Cosine Function
- Power Series Expansion for Hyperbolic Cotangent Function
- Power Series Expansion for Hyperbolic Secant Function
- Power Series Expansion for Hyperbolic Cosecant Function
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Series for Hyperbolic Functions: $20.35$
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $8$. Taylor Series and Power Series: Appendix: Table $8.2$: Power Series of Important Functions
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 22$: Taylor Series: Series for Hyperbolic Functions: $22.35.$