# Prime Magic Square/Examples/Order 3/Smallest with Consecutive Primes

Jump to navigation
Jump to search

## Example of Order $3$ Prime Magic Square

This order $3$ prime magic square is the smallest whose elements are consecutive odd primes:

- $\begin{array}{|c|c|c|} \hline 1 \, 480 \, 028 \, 159 & 1 \, 480 \, 028 \, 153 & 1 \, 480 \, 028 \, 201 \\ \hline 1 \, 480 \, 028 \, 213 & 1 \, 480 \, 028 \, 171 & 1 \, 480 \, 028 \, 129 \\ \hline 1 \, 480 \, 028 \, 141 & 1 \, 480 \, 028 \, 189 & 1 \, 480 \, 028 \, 183 \\ \hline \end{array}$

## Proof

## Also see

## Historical Note

Harry Nelson found this prime magic square, in response to a challenge issued by Martin Gardner, thereby winning the prize offered of $\$100$.

## Sources

- 1988: H.L. Nelson:
*A Consecutive Prime $3 \times 3$ Magic Square*(*J. Recr. Math.***Vol. 20**: pp. 214 – 216)

- 1997: David Wells:
*Curious and Interesting Numbers*(2nd ed.) ... (previous) ... (next): $1,480,028,171$

- Weisstein, Eric W. "Prime Magic Square." From
*MathWorld*--A Wolfram Web Resource. http://mathworld.wolfram.com/PrimeMagicSquare.html