Primitive of Exponential Function/General Result
< Primitive of Exponential Function(Redirected from Primitive of General Exponential Function)
Jump to navigation
Jump to search
Theorem
Let $a \in \R_{>0}$ be a constant such that $a \ne 1$.
Then:
- $\ds \int a^x \rd x = \frac {a^x} {\ln a} + C$
where $C$ is an arbitrary constant.
Proof 1
\(\ds \map {\dfrac \d {\d x} } {a^x}\) | \(=\) | \(\ds a^x \ln a\) | Derivative of General Exponential Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {\dfrac \d {\d x} } {\dfrac {a^x} {\ln a} }\) | \(=\) | \(\ds a^x\) | Derivative of Constant Multiple | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int a^x \rd x\) | \(=\) | \(\ds \dfrac {a^x} {\ln a}\) | Definition of Primitive (Calculus) |
$\blacksquare$
Proof 2
Let $u = x \ln a$.
\(\ds \int a^x \rd x\) | \(=\) | \(\ds \int \map \exp {x \ln a} \rd x\) | Definition of Power to Real Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\ln a} \int \map \exp u \rd u\) | Primitive of Function of Constant Multiple | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \exp u} {\ln a} + C\) | Primitive of Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \exp {x \ln a} } {\ln a} + C\) | Definition of $u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a^x} {\ln a} + C\) | Definition of Power to Real Number |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Integration
- 1960: Margaret M. Gow: A Course in Pure Mathematics ... (previous) ... (next): Chapter $10$: Integration: $10.4$. Standard integrals: Other Standard Results: $\text {(xii)}$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.10$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Front endpapers: A Brief Table of Integrals: $2$.
- 1971: Wilfred Kaplan and Donald J. Lewis: Calculus and Linear Algebra ... (previous) ... (next): Appendix $\text I$: Table of Indefinite Integrals $9$.
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $6$. Integral Calculus: Appendix: Table of Fundamental Standard Integrals
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: General Rules of Integration: $16.10.$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $7$: Integrals
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $8$: Integrals