Primitive of x over Power of Hyperbolic Cosine of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {\cosh^n a x} = \frac {x \sinh a x} {a \paren {n - 1} \cosh^{n - 1} a x} + \frac 1 {a^2 \paren {n - 1} \paren {n - 2} \cosh^{n - 2} a x} + \frac {n - 2} {n - 1} \int \frac {x \rd x} {\cosh^{n - 2} a x} + C$
Proof
\(\ds \int \frac {x \rd x} {\cosh^n a x}\) | \(=\) | \(\ds \int x \sech^n a x \rd x\) | Definition of Hyperbolic Secant | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \int \theta \sech^n \theta \rd \theta\) | Substitution of $a x \to \theta$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac 1 {a^2} \int \theta \sech^n \theta \rd \theta\) | \(=\) | \(\ds \frac 1 {a^2} \int \sech^2 \theta \times \theta \sech^{n - 2} \theta \rd \theta\) | $\rd u = \sech^2 \theta$ and $v = \theta \sech^{n - 2} \theta$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \paren {\theta \tanh \theta \sech^{n - 2} \theta - \int \tanh \theta \paren {- \paren {n - 2} \theta \tanh \theta + 1} \sech^{n - 2} \theta \rd \theta}\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \paren {\theta \tanh \theta \sech^{n - 2} \theta - \int \tanh \theta \sech^{n - 2} \theta \rd \theta + \paren {n - 2} \int \theta \tanh^2 \theta \sech^{n - 2} \theta \rd \theta}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \paren {\theta \tanh \theta \sech^{n - 2} \theta - \int \tanh \theta \sech^{n - 2} \theta \rd \theta + \paren {n - 2} \int \theta \paren {1 - \sech^2 \theta} \sech^{n - 2} \theta \rd \theta}\) | Sum of Squares of Hyperbolic Secant and Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2} \paren {\theta \tanh \theta \sech^{n - 2} \theta - \int \tanh \theta \sech^{n - 2} \theta \rd \theta + \paren {n - 2} \int \theta \sech^{n - 2} \theta \rd \theta - \paren {n - 2} \int \theta \sech^n \theta \rd \theta}\) | simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {1 + \paren {n - 2} } {a^2} \int \theta \sech^n \theta \rd \theta\) | \(=\) | \(\ds \frac 1 {a^2} \paren {\theta \tanh \theta \sech^{n - 2} \theta - \int \tanh \theta \sech^{n - 2} \theta \rd \theta + \paren {n - 2} \int \theta \sech^{n - 2} \theta \rd \theta}\) | adding end term to both sides | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac 1 {a^2} \int \theta \sech^n \theta \rd \theta\) | \(=\) | \(\ds \frac 1 {a^2 \paren {n - 1} } \paren {\theta \tanh \theta \sech^{n - 2} \theta - \int \tanh \theta \sech^{n - 2} \theta \rd \theta + \paren {n - 2} \int \theta \sech^{n - 2} \theta \rd \theta}\) | rearranging for the intended primitive | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^2 \paren {n - 1} } \paren {\theta \tanh \theta \sech^{n - 2} \theta - \paren {- \frac {\sech^{n - 2} \theta } { \paren {n - 2} } } + \paren {n - 2} \int \theta \sech^{n - 2} \theta \rd \theta}\) | Primitive of Power of Hyperbolic Secant of a x by Hyperbolic Tangent of a x | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\theta \sinh \theta} {a^2 \paren {n - 1} \cosh^{n - 1} \theta } + \frac 1 {a^2 \paren {n - 1} \paren {n - 2} \cosh^{n - 2} \theta } + \frac {n - 2} {a^2 \paren {n - 1} } \int \frac {\theta} {\cosh^{n - 2} \theta} \rd \theta\) | simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {x \rd x} {\cosh^n a x}\) | \(=\) | \(\ds \frac {a x \sinh a x} {a^2 \paren {n - 1} \cosh^{n - 1} a x } + \frac 1 {a^2 \paren {n - 1} \paren {n - 2} \cosh^{n - 2} ax } + \frac {n - 2} {n - 1} \int \frac x {\cosh^{n - 2} ax} \rd x\) | Substituting back $\theta \to ax$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x \sinh a x} {a \paren {n - 1} \cosh^{n - 1} a x } + \frac 1 {a^2 \paren {n - 1} \paren {n - 2} \cosh^{n - 2} ax } + \frac {n - 2} {n - 1} \int \frac {x \rd x} {\cosh^{n - 2} ax} + C\) | simplifying and adding integration constant |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\cosh a x$: $14.589$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(28)$ Integrals Involving $\cosh a x$: $17.28.16.$