Primitive of Hyperbolic Sine of a x by Hyperbolic Cosine of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \sinh a x \cosh a x \rd x = \frac {\sinh^2 a x} {2 a} + C$
Proof 1
\(\ds \int \sinh a x \cosh a x \rd x\) | \(=\) | \(\ds \int \frac {\sinh 2 a x} 2 \rd x\) | Double Angle Formula for Hyperbolic Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int \sinh 2 a x \rd x\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {\frac {\cosh 2 a x} {2 a} } + C\) | Primitive of $\sinh a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {\frac {1 + 2 \sinh^2 a x} {2 a} } + C\) | Double Angle Formula for Hyperbolic Cosine: Corollary $2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sinh^2 a x} {2 a} + \frac 1 {4 a} + C\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sinh^2 a x} {2 a} + C\) | subsuming $\dfrac 1 {4 a}$ into arbitrary constant |
$\blacksquare$
Proof 2
\(\ds \int \sinh a x \cosh a x \rd x\) | \(=\) | \(\ds \int \cosh a x \sinh a x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\cosh^2 a x} {2 a} + C\) | Primitive of $\cosh^n a x \sinh a x$ using $n = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {1 + \sinh^2 a x} {2 a} + C\) | Difference of Squares of Hyperbolic Cosine and Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 a} + \frac {\sinh^2 a x} {2 a} + C\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sinh^2 a x} {2 a} + C\) | subsuming $\dfrac 1 {2 a}$ into arbitrary constant |
$\blacksquare$
Proof 3
\(\text {(1)}: \quad\) | \(\ds \int \sinh^n a x \cosh a x \rd x\) | \(=\) | \(\ds \frac {\sinh^{n + 1} a x} {\paren {n + 1} a} + C\) | Primitive of $\sinh^n a x \cosh a x$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \sinh a x \cosh a x \rd x\) | \(=\) | \(\ds \frac {\sinh^2 a x} {2 a} + C\) | setting $n = 1$ in $(1)$ |
$\blacksquare$
Proof 4
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \sinh a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds a \cosh a x\) | Derivative of $\sinh a x$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds \cosh a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {\sinh a x} a\) | Primitive of $\cosh a x$ |
Then:
\(\ds \int \sinh a x \cosh a x \rd x\) | \(=\) | \(\ds \paren {\sinh a x} \paren {\frac {\sinh a x} a} - \int \paren {\frac {\sinh a x} a} \paren {a \cosh a x} \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sinh^2 a x} a - \int \sinh a x \cosh a x \rd x + C\) | simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 \int \sinh a x \cosh a x \rd x\) | \(=\) | \(\ds \frac {\sinh^2 a x} a + C\) | gathering terms | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \sinh a x \cosh a x \rd x\) | \(=\) | \(\ds \frac {\sinh^2 a x} {2 a} + C\) | simplifying |
$\blacksquare$
Proof 5
\(\ds u\) | \(=\) | \(\ds \sinh a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds a \cosh a x\) | Derivative of $\sinh a x$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \sinh a x \cosh a x \rd x\) | \(=\) | \(\ds \int \frac u a \rd u\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int u \rd u\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \frac {u^2} 2 + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sinh^2 a x} {2 a} + C\) | substituting for $u$ |
$\blacksquare$
Also see
- Primitive of $\sinh a x \sinh p x$
- Primitive of $\cosh a x \cosh p x$
- Primitive of $\sinh p x \cosh q x$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sinh a x $ and $\cosh a x$: $14.590$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(29)$ Integrals Involving $\sinh a x $ and $\cosh a x$: $17.29.1.$