Primitive of Reciprocal of Power of Hyperbolic Cosine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\cosh^n a x} = \frac {\sinh a x} {a \paren {n - 1} \cosh^{n - 1} a x} + \frac {n - 2} {n - 1} \int \frac {\d x} {\cosh^{n - 2} a x} + C$


Proof

\(\ds \int \frac {\d x} {\cosh^n a x}\) \(=\) \(\ds \int \sech^n a x \rd x\) Definition 2 of Hyperbolic Secant
\(\ds \) \(=\) \(\ds \frac {\sech^{n - 2} a x \tanh a x} {a \paren {n - 1} } + \frac {n - 2} {n - 1} \int \sech^{n - 2} a x \rd x + C\) Primitive of $\sech^n a x$
\(\ds \) \(=\) \(\ds \frac {\tanh a x} {a \paren {n - 1} \cosh^{n - 2} a x} + \frac {n - 2} {n - 1} \int \frac {\d x} {\cosh^{n - 2} a x} + C\) Definition 2 of Hyperbolic Secant
\(\ds \) \(=\) \(\ds \frac {\sinh a x} {a \cosh a x \paren {n - 1} \cosh^{n - 2} a x} + \frac {n - 2} {n - 1} \int \frac {\d x} {\cosh^{n - 2} a x} + C\) Definition 2 of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \frac {\sinh a x} {a \paren {n - 1} \cosh^{n - 1} a x} + \frac {n - 2} {n - 1} \int \frac {\d x} {\cosh^{n - 2} a x} + C\) simplifying

$\blacksquare$


Also see


Sources