Quintuple Angle Formulas/Sine/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

For all $\theta$ such that $\theta \ne 0, \pm \pi, \pm 2 \pi \ldots$

$\dfrac {\sin 5 \theta} {\sin \theta} = 16 \cos^4 \theta - 12 \cos^2 \theta + 1$

where $\sin$ denotes sine and $\cos$ denotes cosine.


Proof

First note that when $\theta = 0, \pm \pi, \pm 2 \pi \ldots$:

$\sin \theta = 0$

so $\dfrac {\sin 5 \theta} {\sin \theta}$ is undefined.


Therefore for the rest of the proof it is assumed that $\theta \ne 0, \pm \pi, \pm 2 \pi \ldots$


\(\ds \sin 5 \theta\) \(=\) \(\ds 5 \sin \theta - 20 \sin^3 \theta + 16 \sin^5 \theta\) Quintuple Angle Formula for Sine
\(\ds \leadsto \ \ \) \(\ds \dfrac {\sin 5 \theta} {\sin \theta}\) \(=\) \(\ds 5 - 20 \paren {1 - \cos^2 \theta} + 16 \paren {1 - \cos^2 \theta}^2\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds 16 \cos^4 \theta - 12 \cos^2 \theta + 1\) multiplying out and gathering terms

$\blacksquare$


Sources