Riemann Zeta Function at Even Integers/Also presented as
Jump to navigation
Jump to search
Riemann Zeta Function at Even Integers: Also presented as
This can also be seen rendered in the elegant form:
- $\map \zeta r = \dfrac 1 2 \size {B_r} \dfrac {\paren {2 \pi}^r} {r!}$
for $r = 2 n$, $n \ge 1$.
It can also be expressed using the archaic form of the Bernoulli numbers as:
\(\ds \map \zeta {2 n}\) | \(=\) | \(\ds \dfrac {2^{2 n - 1} \pi^{2 n} {B_n}^*} {\paren {2 n}!}\) |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: Series involving Reciprocals of Powers of Positive Integers: $19.35$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Riemann Zeta Function $\map \zeta x = \dfrac 1 {1^x} + \dfrac 1 {2^x} + \dfrac 1 {3^x} + \cdots$: $35.26$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.7$: Harmonic Numbers: $(6)$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 21$: Series of Constants: Series Involving Reciprocals of Powers of Positive Integers: $21.35.$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Riemann Zeta Function $\map \zeta x = \dfrac 1 {1^x} + \dfrac 1 {2^x} + \dfrac 1 {3^x} + \cdots$: $36.26.$