Category:Riemann Zeta Function at Even Integers

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Riemann Zeta Function at Even Integers:


The Riemann $\zeta$ function can be calculated for even integers as follows:

\(\ds \map \zeta {2 n}\) \(=\) \(\ds \paren {-1}^{n + 1} \dfrac {B_{2 n} 2^{2 n - 1} \pi^{2 n} } {\paren {2 n}!}\)
\(\ds \) \(=\) \(\ds \frac 1 {1^{2 n} } + \frac 1 {2^{2 n} } + \frac 1 {3^{2 n} } + \frac 1 {4^{2 n} } + \cdots\)

where:

$B_n$ are the Bernoulli numbers
$n$ is a positive integer.