Basel Problem/Proof 9: Difference between revisions

From ProofWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 48: Line 48:
== Sources ==
== Sources ==


* {{BookReference|Fourier Series|1961|I.N. Sneddon|prev = Fourier Series/Square of x minus pi, Square of pi|next = Sum of Reciprocals of Squares Alternating in Sign/Proof 1}}: Chapter One: $\S 2$. Fourier Series: Example $1$
* {{BookReference|Fourier Series|1961|I.N. Sneddon|prev = Fourier Series/Square of x minus pi, Square of pi/Mistake|next = Sum of Reciprocals of Squares Alternating in Sign/Proof 1}}: Chapter One: $\S 2$. Fourier Series: Example $1$


[[Category:Basel Problem]]
[[Category:Basel Problem]]

Revision as of 07:32, 7 March 2018

Theorem

$\ds \map \zeta 2 = \sum_{n \mathop = 1}^\infty {\frac 1 {n^2} } = \frac {\pi^2} 6$

where $\zeta$ denotes the Riemann zeta function.


Proof

Let $f \left({x}\right)$ be the real function defined on $\left({0 \,.\,.\, 2 \pi}\right)$ as:

$f \left({x}\right) = \begin{cases}

\left({x - \pi}\right)^2 & : 0 < x \le \pi \\ \pi^2 & : \pi < x < 2 \pi \end{cases}$

From Fourier Series: Square of x minus pi, Square of pi, its Fourier series can be expressed as:

$f \left({x}\right) \sim \displaystyle \frac {2 \pi^2} 3 + \sum_{n \mathop = 1}^\infty \left({\frac {2 \cos n x} {n^2} + \left({\frac {\left({-1}\right)^n \pi} n + \frac {2 \left({\left({-1}\right)^n - 1}\right)} {\pi n^3} }\right) \sin n x}\right)$


Setting $x = 0$:

\(\ds f \left({0}\right)\) \(=\) \(\ds \frac {2 \pi^2} 3 + \sum_{n \mathop = 1}^\infty \left({\frac {2 \cos 0} {n^2} + \left({\frac {\left({-1}\right)^n \pi} n + \frac {2 \left({\left({-1}\right)^n - 1}\right)} {\pi n^3} }\right) \sin 0}\right)\)
\(\ds \leadsto \ \ \) \(\ds \left({0 - \pi}\right)^2\) \(=\) \(\ds \frac {2 \pi^2} 3 + \sum_{n \mathop = 1}^\infty \left({\frac {2 \cos 0} {n^2} }\right)\) Sine of Zero is Zero
\(\ds \leadsto \ \ \) \(\ds \pi^2\) \(=\) \(\ds \frac {2 \pi^2} 3 + 2 \sum_{n \mathop = 1}^\infty \frac 1 {n^2}\) Cosine of Zero is One
\(\ds \leadsto \ \ \) \(\ds \frac {\pi^2} 2 - \frac {\pi^2} 3\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^2}\)
\(\ds \leadsto \ \ \) \(\ds \frac {\pi^2} 6\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^2}\)

$\blacksquare$


Sources