Successor to Natural Number
Jump to navigation
Jump to search
![]() | It has been suggested that this page be renamed. To discuss this page in more detail, feel free to use the talk page. |
Theorem
Let $\N_{> 0}$ be the 1-based natural numbers:
- $\N_{> 0} = \left\{{1, 2, 3, \ldots}\right\}$
Let $<$ be the ordering on $\N_{> 0}$:
- $\forall a, b \in \N_{>0}: a < b \iff \exists c \in \N_{>0}: a + c = b$
Let $a \in \N_{>0}$.
Then there exists no natural number $n$ such that $a < n < a + 1$.
Proof
Using the following axioms:
\((\text A)\) | $:$ | \(\ds \exists_1 1 \in \N_{> 0}:\) | \(\ds a \times 1 = a = 1 \times a \) | ||||||
\((\text B)\) | $:$ | \(\ds \forall a, b \in \N_{> 0}:\) | \(\ds a \times \paren {b + 1} = \paren {a \times b} + a \) | ||||||
\((\text C)\) | $:$ | \(\ds \forall a, b \in \N_{> 0}:\) | \(\ds a + \paren {b + 1} = \paren {a + b} + 1 \) | ||||||
\((\text D)\) | $:$ | \(\ds \forall a \in \N_{> 0}, a \ne 1:\) | \(\ds \exists_1 b \in \N_{> 0}: a = b + 1 \) | ||||||
\((\text E)\) | $:$ | \(\ds \forall a, b \in \N_{> 0}:\) | \(\ds \)Exactly one of these three holds:\( \) | ||||||
\(\ds a = b \lor \paren {\exists x \in \N_{> 0}: a + x = b} \lor \paren {\exists y \in \N_{> 0}: a = b + y} \) | |||||||||
\((\text F)\) | $:$ | \(\ds \forall A \subseteq \N_{> 0}:\) | \(\ds \paren {1 \in A \land \paren {z \in A \implies z + 1 \in A} } \implies A = \N_{> 0} \) |
Suppose that $\exists n \in \N_{>0}: a < n < a + 1$.
Then by the definition of ordering on natural numbers:
\(\ds a + x\) | \(=\) | \(\ds n\) | Definition of Ordering on Natural Numbers: $a < n$ | |||||||||||
\(\ds n + y\) | \(=\) | \(\ds a + 1\) | Definition of Ordering on Natural Numbers: $a < n$ | |||||||||||
\(\ds \implies \ \ \) | \(\ds \left({a + x}\right) + y\) | \(=\) | \(\ds a + 1\) | substitution for $n$ | ||||||||||
\(\ds \implies \ \ \) | \(\ds a + \left({x + y}\right)\) | \(=\) | \(\ds a + 1\) | Natural Number Addition is Associative | ||||||||||
\(\ds \implies \ \ \) | \(\ds x + y\) | \(=\) | \(\ds 1\) | Addition on $1$-Based Natural Numbers is Cancellable |
By Axiom $D$, either:
- $y = 1$
or:
- $y = t + 1$ for some $t \in \N_{>0}$
Then either:
- $x + 1 = 1$ when $y = 1$
or:
- $x + \left({t + 1}\right) = \left({x + t}\right) + 1 = 1$ when $y = t + 1$
Both of these conclusions violate Natural Number is Not Equal to Successor.
Hence the result.
$\blacksquare$
Sources
- 1964: W.E. Deskins: Abstract Algebra ... (previous) ... (next): $2.2$: Theorem $2.15$