Sum of Bernoulli Numbers by Power of Two and Binomial Coefficient
Theorem
Let $n \in \Z_{>0}$ be a (strictly) positive integer.
Then:
\(\ds \sum_{k \mathop = 1}^n \dbinom {2 n + 1} {2 k} 2^{2 k} B_{2 k}\) | \(=\) | \(\ds \binom {2 n + 1} 2 2^2 B_2 + \binom {2 n + 1} 4 2^4 B_4 + \binom {2 n + 1} 6 2^6 B_6 + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 n\) |
where $B_n$ denotes the $n$th Bernoulli number.
Proof 1
Let $B_k$ denote the kth Bernoulli number
Let $B_k \left(x\right)$ denote the kth Bernoulli polynomial
By Value of Odd Bernoulli Polynomial at One Half:
\(\ds B_{2 n + 1} \left({\frac 1 2}\right)\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{k \mathop = 0}^{2 n + 1} \binom {2 n + 1} k B_k \left({\frac 1 2}\right)^{2 n + 1 - k}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2^{2 n + 1} \sum_{k \mathop = 0}^{2 n + 1} \binom {2 n + 1} k B_k \left({\frac 1 2}\right)^{2 n + 1 - k}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{k \mathop = 0}^{2 n + 1} \binom {2 n + 1} k B_k \left({\frac 1 2}\right)^{-k}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{k \mathop = 0}^{2 n + 1} \binom {2 n + 1} k B_k 2^k\) | \(=\) | \(\ds 0\) |
By Odd Bernoulli Numbers Vanish:
\(\ds \sum_{k \mathop = 0}^{2 n + 1} \binom {2 n + 1} k B_k 2^k\) | \(=\) | \(\ds \left({2 n + 1}\right) 2 B_1 + \sum_{k \mathop = 0}^n \binom {2 n + 1} {2 k} B_{2 k} 2^{2 k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\left({2 n + 1}\right) + \sum_{k \mathop = 0}^n \binom {2 n + 1 } {2 k} B_{2 k} 2^{2 k}\) | $B_1 = -\frac 1 2$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{k \mathop = 0}^n \binom {2 n + 1} {2 k} B_{2 k} 2^{2 k}\) | \(=\) | \(\ds 2 n + 1\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{k \mathop = 1}^n \binom {2 n + 1} {2 k} B_{2 k} 2^{2 k}\) | \(=\) | \(\ds 2 n + 1 - B_0\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 n\) | $B_0 = 1$ |
$\blacksquare$
Proof 2
The proof proceeds by induction.
For all $n \in \Z_{> 0}$, let $P \left({n}\right)$ be the proposition:
- $\displaystyle \sum_{k \mathop = 1}^n \dbinom {2 n + 1} {2 k} 2^{2 k} B_{2 k} = 2 n$
Basis for the Induction
$P \left({1}\right)$ is the case:
\(\ds \binom {2 \times 1 + 1} 2 2^2 B_2\) | \(=\) | \(\ds \frac {2 \times 3} 2 \times 2^2 \times \frac 1 6\) | Binomial Coefficient with Two, Definition of Bernoulli Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds 2\) | after simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \times 1\) |
Thus $P \left({1}\right)$ is seen to hold.
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 2$, then it logically follows that $P \left({r + 1}\right)$ is true.
So this is the induction hypothesis:
- $\displaystyle \sum_{k \mathop = 1}^r \dbinom {2 r + 1} {2 k} 2^{2 k} B_{2 k} = 2 r$
from which it is to be shown that:
- $\displaystyle \sum_{k \mathop = 1}^{r + 1} \dbinom {2 \left({r + 1}\right) + 1} {2 k} 2^{2 k} B_{2 k} = 2 \left({r + 1}\right)$
Induction Step
This is the induction step:
\(\ds \sum_{k \mathop = 1}^{r + 1} \dbinom {2 \left({r + 1}\right) + 1} {2 k} 2^{2 k} B_{2 k}\) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dbinom {2 \left({r + 1}\right) + 1} {2 k} 2^{2 k} B_{2 k} + \dbinom {2 \left({r + 1}\right) + 1} {2 \left({r + 1}\right)} 2^{2 \left({r + 1}\right)} B_{2 \left({r + 1}\right)}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dbinom {2 r + 3} {2 k} 2^{2 k} B_{2 k} + \left({2 r + 3}\right) 2^{2 r + 2} B_{2 r + 2}\) | Binomial Coefficient with Self minus One and simplification |
So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n \in \Z_{>0}: \displaystyle \sum_{k \mathop = 1}^n \dbinom {2 n + 1} {2 k} 2^{2 k} B_{2 k} = 2 n$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 21$: Relationships of Bernoulli and Euler Numbers: $21.5$