Sum of Integrals on Complementary Sets
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $A, E \in \Sigma$ with $A \subseteq E$.
Let $f$ be a $\mu$-integrable function on $X$.
Then
- $\ds \int_E f \rd \mu = \int_A f \rd \mu + \int_{E \mathop \setminus A} f \rd \mu$
Proof
Let $\chi_E$ be the characteristic function of $E$.
Because $A$ and $E \setminus A$ are disjoint:
- $A \cap \paren {E \setminus A} = \O$
By Characteristic Function of Union:
- $\chi_E = \chi_A + \chi_{E \mathop \setminus A}$
Integrating $f$ over $E$ gives:
\(\ds \int_E f \rd \mu\) | \(=\) | \(\ds \int \chi_E \cdot f \rd \mu\) | Definition of Integral of Measure-Integrable Function over Measurable Set | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\chi_A + \chi_{E \mathop \setminus A} } \cdot f \rd \mu\) | by the above argument | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\chi_A \cdot f + \chi_{E \mathop \setminus A} \cdot f} \rd \mu\) | Pointwise Operation on Distributive Structure is Distributive | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \chi_A \cdot f \rd \mu + \int \chi_{E \mathop \setminus A} \cdot f \rd \mu\) | Integral of Integrable Function is Additive | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_A f \rd \mu + \int_{E \mathop \setminus A} f \rd \mu\) | Definition of Integral of Measure-Integrable Function over Measurable Set |
$\blacksquare$
Also see
Sources
- 1988: H.L. Royden: Real Analysis (3rd ed.): Chapter $4$, section $4$, proposition $15 \ \text{(iv)}$